View clinical trials related to Pneumonia, Ventilator-Associated.
Filter by:Almost 90 out of 100 people carry herpes simplex viruses (HSV). Once a person has been infected with the herpes viruses, he or she can't get rid of them for the rest of her/his life. For the most part, the viruses are in a dormant state. Only when the immune system is weakened, for example in the case of a serious illness or stress, are the viruses reactivated. They then mainly cause cold sores, which are harmless for healthy people and usually heal without therapy. However, especially in people with a weakened immune system, HSV can also cause serious infections, such as meningitis. In almost every second mechanically ventilated patient in intensive care who has pneumonia, HSV can be detected in the respiratory tract. This is caused by reactivation of the viruses as a result of the severe underlying disease and stress during intensive care therapy. Whether treatment of the herpes viruses (e.g. with acyclovir) is necessary in this situation and helps the patients to cure has not been clarified, especially as acyclovir can also cause side effects such as a deterioration in kidney function. Currently, the physicians decide to treat the herpes viruses in about half of the patients. Several studies have shown that patients for whom the physician decided to treat the viruses survived more often. However, all of these studies looked at the course of the disease only retrospectively and thus are subject to many biases (including physician selection of who receives treatment, missing data). A definitive conclusion as to whether herpesvirus therapy can be recommended cannot be drawn without doubt from these studies. Therefore, the investigators would like to investigate in a randomized controlled trial, i.e. patients are randomly assigned to the experimental (therapy of herpesviruses) or control group (no therapy of herpesviruses), the effect of therapy with acyclovir on survival in mechanically ventilated intensive care patients with lower respiratory tract infection (pneumonia) in whom a large amount of HSV was found in the respiratory tract. The goal of the study is to provide clarity on whether therapy will help patients recover.
The goal of this clinical trial is to learn about effects of chlorhexidine gluconate, sodium bicarbonate, ozonated water and hypochlorous acid solutions used in oral care of patients on mechanical ventilation support on preventing ventilator associated pneumonia. The main question[s] it aims to answer are: Is there any difference between 1% chlorhexidine gluconate, sodium bicarbonate, ozonated water and hypochlorous acid solutions versus 0.12% chlorhexidine gluconate solution used in oral care in preventing the development of VAP? Is there any difference between 1% chlorhexidine gluconate, sodium bicarbonate, ozonated water and hypochlorous acid solutions versus 0.12% chlorhexidine gluconate solution used in oral care in preventing the development of VAP? Researchers will compare 1% chlorhexidine gluconate, sodium bicarbonate, ozonated water and hypochlorous acid solutions to see if VAP
Severe trauma, head trauma, stroke and resuscitated cardiac arrest patients requiring endotracheal intubation and mechanical ventilation are at high risk of early-onset ventilator-associated pneumonia (EO-VAP). A short course of systemic antibiotic is recommended for prophylaxis. This study intends to assess the safety and efficacy of 2 alternative mechanical non-invasive airway clearance techniques in the prevention of EO-VAP in an open label randomized pilot trial of 20 subjects per study group i.e., 60 cases. The interventions will be in place for 7 days and the observational periods will be 14 days.
PROACT study aims to resolve uncertainties to influence actual practice guidelines or public health policing regarding VAP prevention in ICU by using probiotics administration. Multi-trauma patients with a head injury OR stroke or brain haemorrhage patients without any sign of aspiration and lung infection will be enrolled and randomized to either placebo or probiotic treatment to assess if VAP and mortality can be reduced in the interventional group.
Aim of the study : 1. Efficacy of Sono pulmonary infection score in combination with APACHE score in early diagnosis of VAP 2. Assessment of prediction role of combined SIPS SCORE and APACHE SCORE of outcome of VAP patient in RICU 3. Assessments of role of ultrasonography in early diagnosis and follow up of VAP
The goal of this clinical trial is to determine the effect of a self-instructional module regarding ventilator-associated pneumonia care bundle prevention on internship students' knowledge and clinical performance in pediatric intensive care unit.The hypotheses of this study were as follows: 1. Internship students who are taught by VAP care bundle prevention self-instructional module exhibit higher scores in knowledge test about VAP care bundle prevention than those who are not. 2. Internship students who are taught by VAP care bundle prevention self-instructional module exhibit higher scores in performing the VAP care bundle prevention procedure than those who are not. 3. Internship students who are taught by VAP care bundle prevention self-instructional module exhibit more positive feedback about it than those who are not.
The goal of this observational study is to investigate whether intravenous polymyxin B combined with nebulisation achieves better antimicrobial efficacy and clinical outcomes than intravenous use alone in patients with multidrug-resistant gram-negative bacilli infected with ventilator-associated pneumonia. The main questions it aims to answer are: - When using intravenous polymyxin B to treat patients with ventilator-associated pneumonia caused by multidrug-resistant bacteria in clinical practice, is it necessary to assist with polymyxin B nebulization therapy? - If necessary, how much dose of nebulization is better? Participants will be divided into two groups based on whether they have received nebulization treatment with polymyxin B in clinical practice. Blood and alveolar lavage fluid samples will be collected after the first dose injection and reaching the steady-state dose, and the drug concentration differences in blood and ELF will be measured in patients who have received intravenous injection of polymyxin B alone and those who have received adjuvant nebulization of polymyxin B, as well as differences in clinical outcomes and side effects. Researchers will compare the differences in blood and ELF drug concentrations, clinical outcomes, and incidence of side effects between two groups of patients, to see if is it necessary to assist with polymyxin B nebulization therapy in patients with multidrug-resistant gram-negative bacilli infected with ventilator-associated pneumonia.
objective of LUNG-I3 study is to assess the quantitative and functional differences in cells between blood and bronchoalveolar lavage (BAL) fluid after an infection, with a special focus on alveolar macrophages and neutrophils
Ventilator-associated pneumonia (VAP) is a frequent and serious complication in the ICU, defined by the development of a lung infection in patients ventilated for more than 48 hours. The incidence rate of this condition exceeds 18 episodes per 1000 days of mechanical ventilation in Europe. This nosocomial infection is associated with the highest mortality, ranging from 24% to 76% depending on the series. Reducing the incidence of VAP remains a challenge for clinicians, as evidenced by the many recent recommendations that have led to "bundles" to prevent the onset of this complication. Despite this, these recommendations do not propose a strategy to prevent the recurrence of PAVM, a frequent entity with a reported incidence of 25-35% and a non-consensual definition that increases antibiotic consumption, duration of mechanical ventilation and length of stay in the ICU . In fact, these recurrences can be linked to: - Intrinsic patient risk factors (immunosuppression, severity of disease, major inflammatory response, reason for initial admission), - Inappropriate initial antibiotic therapy (type, duration and dose administered), - Characteristics specific to the pathogens encountered (virulence factors or resistance), - Intercurrent complications during management of the initial pneumonia (ARDS, abscess, pleural empyema). Given the frequency of these recurrences, and the persistent doubts about the role of terrain and pathogen characteristics in their genesis, it seems appropriate to look at risk factors that could help anticipate these events. The aim of our study will be to identify the risk factors and mortality associated with the occurrence of a recurrence of VAP in patients hospitalized in the intensive care unit. An essential first step in this work will be to identify and then use the most consensual definition of recurrence of VAP, encompassing recurrence, persistence and superinfection. We will use the definitions in the protocol for the ASPIC trial, which is currently undergoing enrolment. The second step is to identify risk factors for recurrence. By identifying these factors, it could be possible to propose a prognostic score that would enable careful monitoring (or modification of antibiotic therapy) of patients most at risk of recurrence. Such a score could then be evaluated in a prospective study.
This study is designed to investigate the effect of educational program for nurses about preventive care bundle for prevention of ventilator associated pneumonia among newborns.