Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT03591952
Other study ID # 180339
Secondary ID 180339
Status Completed
Phase N/A
First received
Last updated
Start date August 1, 2018
Est. completion date September 12, 2019

Study information

Verified date February 2022
Source Vanderbilt University Medical Center
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Thoracentesis is a very common procedure, rarely associated with severe complications. One relatively common complication is chest discomfort, which is most of the time felt to be secondary to negative pleural pressures generated during the procedure. While most proceduralists use suction to drain the pleural fluid, some drain effusions by gravity only. The investigators propose to evaluate whether gravity-driven thoracentesis results in less discomfort for patients than suction-drive thoracentesis.


Description:

Therapeutic thoracentesis aims to drain fluid from the pleural space to alleviate breathlessness. The amount of and speed with which the fluid can be safely drained in one setting is unclear, and likely depends on the physiology of the pleural effusion. The principle concern when draining a large amount of fluid quickly from the pleural space is that excessively negative pleural pressure may be generated; this occurs if the lung is unable to freely re-expand into the space previously occupied by fluid. Excessively negative pleural pressure and the resulting high transpulmonary pressure gradient are thought to be associated with several complications, including pneumothorax ex vacuo, chest discomfort, and re-expansion pulmonary edema (REPE). Evidence suggests that monitoring pleural pressures during thoracentesis via manometry does not mitigate this problem. In fact, data shows that whether manometry is used or not, most patients do experience clinically significant increase in chest discomfort during thoracentesis. Current methods for draining the pleural fluid include suction- (via vacuum bottles, wall suction or the use of large syringes with a one-way valve tubing system) or gravity-driven thoracentesis. Pressures generated by all suction techniques range from -200 to -500 cmH2O, and far exceed what are considered safe pleural pressures. Accordingly, in case of non-expandable lung, excessively negative pressures may develop quickly, exposing patients to complications. Some clinicians advocate for gravity drainage, which generates less negative pressures in the pleural space (specifically defined as the vertical distance between the catheter and the drainage bag, generally around -50 to -100 cmH20). While this technique is considered standard of care by some as it is potentially more comfortable for patients, it is also likely associated with longer procedures, and is not generally favored by clinicians who in general prefer suction drainage, despite the possible higher risk of complications.The investigators propose to study the impact of gravity- versus suction-driven large volume therapeutic thoracentesis on the development of chest discomfort during the procedure, and consider as secondary endpoints: the duration of the procedure, the amount of pleural fluid drained, the rate of REPE, the rate of pneumothorax ex vacuo.


Recruitment information / eligibility

Status Completed
Enrollment 138
Est. completion date September 12, 2019
Est. primary completion date April 5, 2019
Accepts healthy volunteers No
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: 1. Referral to pulmonary services for large-volume thoracentesis 2. Presence of a symptomatic moderate or large free-flowing (non-septated) pleural effusion on the basis of: 1. Chest radiograph: effusion filling = 1/3 the hemithorax, OR 2. CT-scan: maximum AP depth of the effusion = 1/3 of the AP dimension on the axial image superior to the hemidiaphragm, including atelectatic lung completely surrounded by effusion, OR Ultrasound: effusion spanning at least three interspaces, with depth of 3 cm or greater in at least one interspace, while the patient sits upright. 3. Age > 18 Exclusion Criteria: 1. Inability to provide informed consent 2. Patient has already been enrolled in this study 3. Study subject has any disease or condition that interferes with safe completion of the study including: 1. Coagulopathy, with criteria left at the discretion of the operator 2. Hemodynamic instability with systolic blood pressure <90 mmHg or heart rate > 120 beats/min, unless deemed to be stable with these values by the attending physicians 4. Pleural effusion is smaller than expected on bedside pre-procedure ultrasound 5. Referral is for diagnostic thoracentesis only 6. Presence of more than minimal septations and/or loculations on bedside pre-procedure ultrasound 7. Inability to sit for the procedure

Study Design


Related Conditions & MeSH terms


Intervention

Procedure:
Suction-Driven Thoracentesis
Thoracentesis is a procedure in which a needle is inserted into the pleural space between the lungs and the chest wall. This procedure is done to remove excess fluid, known as a pleural effusion, from the pleural space to help one breathe easier.
Gravity-Driven Thoracentesis
Thoracentesis is a procedure in which a needle is inserted into the pleural space between the lungs and the chest wall. This procedure is done to remove excess fluid, known as a pleural effusion, from the pleural space to help one breathe easier.

Locations

Country Name City State
United States Vanderbilt University Medical Center Nashville Tennessee

Sponsors (1)

Lead Sponsor Collaborator
Vanderbilt University Medical Center

Country where clinical trial is conducted

United States, 

Outcome

Type Measure Description Time frame Safety issue
Primary Difference in post-procedure chest discomfort scores between control (suction) and intervention (gravity) groups As measured in millimeters along a 10 cm Visual Analog Scale (VAS). The estimated minimal clinically important difference is 15 mm. Descriptive statistics including means, standard deviations, and ranges will be presented. Investigations for outliers and assumptions for statistical analysis, e.g., normality and homoscedasticity will be made. If necessary, data will be transformed using Box-Cox power transformation. Comparisons between groups, i.e. intervention versus (vs) control, will be made using the t-test or Wilcoxon Rank Sum test. Mixed model will be employed to assess the trend of pain score measured across pre-, intra-, and post-procedure. One-time assessment, 5 minutes after thoracentesis catheter is removed (on day 1)
Secondary Incidence of pneumothorax Assessed as either present or absent on the immediate post-procedure chest radiograph per radiologist interpretation. Descriptive statistics including percentages and frequencies will be presented. Investigations for outliers and assumptions for statistical analysis, e.g., normality and homoscedasticity will be made. If necessary, data will be transformed using Box-Cox power transformation. Comparisons between groups, i.e. intervention vs control, will be made using the Chi-square test. 20 minutes after thoracentesis catheter is removed (on day 1)
Secondary Incidence of clinically-significant re-expansion pulmonary edema Assessed as present if immediate post-procedure chest radiograph demonstrates new pulmonary edema per radiologist interpretation when compared to pre-procedure radiograph in the hemithorax that underwent thoracentesis, and subject has post-procedure new-onset or worsened hypoxic respiratory failure. Descriptive statistics including percentages and frequencies will be presented. Investigations for outliers and assumptions for statistical analysis, e.g., normality and homoscedasticity will be made. If necessary, data will be transformed using Box-Cox power transformation. Comparisons between groups, i.e. intervention vs control, will be made using the Chi-square test. 20 minutes after thoracentesis catheter is removed (on day 1)
Secondary Incidence of radiographically-apparent re-expansion pulmonary edema Assessed as present if immediate post-procedure chest radiograph demonstrates new pulmonary edema per radiologist interpretation when compared to pre-procedure radiograph in the hemithorax that underwent thoracentesis. Descriptive statistics including percentages and frequencies will be presented. Investigations for outliers and assumptions for statistical analysis, e.g., normality and homoscedasticity will be made. If necessary, data will be transformed using Box-Cox power transformation. Comparisons between groups, i.e. intervention vs control, will be made using the Chi-square test. 20 minutes after thoracentesis catheter is removed (on day 1)
Secondary Volume of pleural fluid removed by the thoracentesis procedure Measured in milliliters. Descriptive statistics including means, standard deviations, and ranges will be presented. Investigations for outliers and assumptions for statistical analysis, e.g., normality and homoscedasticity will be made. If necessary, data will be transformed using Box-Cox power transformation. Comparisons between groups, i.e. intervention vs control, will be made using the t-test or Wilcoxon Rank Sum test. Immediately after the thoracentesis catheter is removed, on day 1
Secondary Improvement in dyspnea scores Assessed in millimeters along a 10 cm Visual Analog Scale (VAS), from pre-procedure (baseline) to 5 minutes after completion of the procedure. Descriptive statistics including means, standard deviations, and ranges will be presented. Investigations for outliers and assumptions for statistical analysis, e.g., normality and homoscedasticity will be made. If necessary, data will be transformed using Box-Cox power transformation. Comparisons between groups, i.e. intervention vs control, will be made using either the t-test or Wilcoxon Rank Sum test. From 1 minute pre-procedure to 5 minutes after thoracentesis catheter is removed (on day 1)
Secondary Duration of procedure Measured in seconds, assessed from the time the thoracentesis catheter is introduced to the time the catheter is removed. Descriptive statistics including means, standard deviations, and ranges will be presented. Investigations for outliers and assumptions for statistical analysis, e.g., normality and homoscedasticity will be made. If necessary, data will be transformed using Box-Cox power transformation. Comparisons between groups, i.e. intervention vs control, will be made using the t-test or Wilcoxon Rank Sum test. During the procedure, on day 1, intraoperative
See also
  Status Clinical Trial Phase
Completed NCT04159831 - A Study to Evaluate LTI-01 in Patients With Infected, Non-draining Pleural Effusions Phase 2
Recruiting NCT02891642 - Liquid Biopsy With Immunomagnetic Beads Capture Technique for Malignant Cell Detection in Body Fluid
Completed NCT02232841 - Electrical Impedance Imaging of Patients on Mechanical Ventilation N/A
Completed NCT02045641 - Pleural and Pericardial Effusion Following Open Heart Surgery N/A
Completed NCT01948076 - Evaluation of a Pocket-Sized Ultrasound Device As an Aid to the Physical Examination N/A
Completed NCT01416519 - Physiotherapy Technique Decreases Respiratory Complications After Cardiac Operation N/A
Completed NCT01560078 - Efficacy Study of Thrice Weekly Directly Observed Treatment Short-Course Regimen in Tubercular Pleural Effusion N/A
Completed NCT04891705 - Point of Care Ultrasound Lung Artificial Intelligence (AI) Validation Data Collection Study
Recruiting NCT05759117 - Prospective Evaluation of Patients With Pleural Effusion
Recruiting NCT05910112 - Prospective Data Collection on Clinical, Radiological and Patient Reported Outcomes After Pleural Intervention
Completed NCT03896672 - Clinical Implementation of the Use of Positive Pressure in Chest Drainage N/A
Active, not recruiting NCT06075836 - AI Assisted Detection of Chest X-Rays
Recruiting NCT03728491 - Education and Training Competences in Thoracic Ultrasound N/A
Completed NCT03535883 - The Safety of Thoracentesis, Tunneled Pleural Catheter, and Chest Tubes in Patients Taking Novel Oral Anti-Coagulants
Not yet recruiting NCT03260088 - Evaluation Of Pleural Effusion At Assiut University Hospital N/A
Completed NCT03296280 - Evaluation of Implementation of a National Point-of-Care Ultrasound Training Program
Completed NCT03661801 - Novel Pleural Fluid, Biopsy and Serum Biomarkers for the Investigation of Pleural Effusions
Completed NCT01778270 - Not Invasive Monitoring of Pleural Drainage N/A
Terminated NCT00402896 - Malignant Pleural Effusion With ZD6474 Phase 2
Recruiting NCT00103766 - Alteplase for Treatment of Empyema and Complicated Parapneumonic Effusion N/A