Clinical Trials Logo

Clinical Trial Summary

Thoracentesis is a very common procedure, rarely associated with severe complications. One relatively common complication is chest discomfort, which is most of the time felt to be secondary to negative pleural pressures generated during the procedure. While most proceduralists use suction to drain the pleural fluid, some drain effusions by gravity only. The investigators propose to evaluate whether gravity-driven thoracentesis results in less discomfort for patients than suction-drive thoracentesis.


Clinical Trial Description

Therapeutic thoracentesis aims to drain fluid from the pleural space to alleviate breathlessness. The amount of and speed with which the fluid can be safely drained in one setting is unclear, and likely depends on the physiology of the pleural effusion. The principle concern when draining a large amount of fluid quickly from the pleural space is that excessively negative pleural pressure may be generated; this occurs if the lung is unable to freely re-expand into the space previously occupied by fluid. Excessively negative pleural pressure and the resulting high transpulmonary pressure gradient are thought to be associated with several complications, including pneumothorax ex vacuo, chest discomfort, and re-expansion pulmonary edema (REPE). Evidence suggests that monitoring pleural pressures during thoracentesis via manometry does not mitigate this problem. In fact, data shows that whether manometry is used or not, most patients do experience clinically significant increase in chest discomfort during thoracentesis. Current methods for draining the pleural fluid include suction- (via vacuum bottles, wall suction or the use of large syringes with a one-way valve tubing system) or gravity-driven thoracentesis. Pressures generated by all suction techniques range from -200 to -500 cmH2O, and far exceed what are considered safe pleural pressures. Accordingly, in case of non-expandable lung, excessively negative pressures may develop quickly, exposing patients to complications. Some clinicians advocate for gravity drainage, which generates less negative pressures in the pleural space (specifically defined as the vertical distance between the catheter and the drainage bag, generally around -50 to -100 cmH20). While this technique is considered standard of care by some as it is potentially more comfortable for patients, it is also likely associated with longer procedures, and is not generally favored by clinicians who in general prefer suction drainage, despite the possible higher risk of complications.The investigators propose to study the impact of gravity- versus suction-driven large volume therapeutic thoracentesis on the development of chest discomfort during the procedure, and consider as secondary endpoints: the duration of the procedure, the amount of pleural fluid drained, the rate of REPE, the rate of pneumothorax ex vacuo. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03591952
Study type Interventional
Source Vanderbilt University Medical Center
Contact
Status Completed
Phase N/A
Start date August 1, 2018
Completion date September 12, 2019

See also
  Status Clinical Trial Phase
Completed NCT04159831 - A Study to Evaluate LTI-01 in Patients With Infected, Non-draining Pleural Effusions Phase 2
Recruiting NCT02891642 - Liquid Biopsy With Immunomagnetic Beads Capture Technique for Malignant Cell Detection in Body Fluid
Completed NCT02232841 - Electrical Impedance Imaging of Patients on Mechanical Ventilation N/A
Completed NCT02045641 - Pleural and Pericardial Effusion Following Open Heart Surgery N/A
Completed NCT01948076 - Evaluation of a Pocket-Sized Ultrasound Device As an Aid to the Physical Examination N/A
Completed NCT01416519 - Physiotherapy Technique Decreases Respiratory Complications After Cardiac Operation N/A
Completed NCT01560078 - Efficacy Study of Thrice Weekly Directly Observed Treatment Short-Course Regimen in Tubercular Pleural Effusion N/A
Completed NCT04891705 - Point of Care Ultrasound Lung Artificial Intelligence (AI) Validation Data Collection Study
Recruiting NCT05759117 - Prospective Evaluation of Patients With Pleural Effusion
Recruiting NCT05910112 - Prospective Data Collection on Clinical, Radiological and Patient Reported Outcomes After Pleural Intervention
Completed NCT03896672 - Clinical Implementation of the Use of Positive Pressure in Chest Drainage N/A
Active, not recruiting NCT06075836 - AI Assisted Detection of Chest X-Rays
Recruiting NCT03728491 - Education and Training Competences in Thoracic Ultrasound N/A
Completed NCT03535883 - The Safety of Thoracentesis, Tunneled Pleural Catheter, and Chest Tubes in Patients Taking Novel Oral Anti-Coagulants
Not yet recruiting NCT03260088 - Evaluation Of Pleural Effusion At Assiut University Hospital N/A
Completed NCT03296280 - Evaluation of Implementation of a National Point-of-Care Ultrasound Training Program
Completed NCT03661801 - Novel Pleural Fluid, Biopsy and Serum Biomarkers for the Investigation of Pleural Effusions
Completed NCT01778270 - Not Invasive Monitoring of Pleural Drainage N/A
Terminated NCT00402896 - Malignant Pleural Effusion With ZD6474 Phase 2
Recruiting NCT00103766 - Alteplase for Treatment of Empyema and Complicated Parapneumonic Effusion N/A