Pleural Effusion Clinical Trial
Official title:
Gravity- Versus Suction-driven Large Volume Thoracentesis: a Randomized Controlled Study
Thoracentesis is a very common procedure, rarely associated with severe complications. One relatively common complication is chest discomfort, which is most of the time felt to be secondary to negative pleural pressures generated during the procedure. While most proceduralists use suction to drain the pleural fluid, some drain effusions by gravity only. The investigators propose to evaluate whether gravity-driven thoracentesis results in less discomfort for patients than suction-drive thoracentesis.
Therapeutic thoracentesis aims to drain fluid from the pleural space to alleviate breathlessness. The amount of and speed with which the fluid can be safely drained in one setting is unclear, and likely depends on the physiology of the pleural effusion. The principle concern when draining a large amount of fluid quickly from the pleural space is that excessively negative pleural pressure may be generated; this occurs if the lung is unable to freely re-expand into the space previously occupied by fluid. Excessively negative pleural pressure and the resulting high transpulmonary pressure gradient are thought to be associated with several complications, including pneumothorax ex vacuo, chest discomfort, and re-expansion pulmonary edema (REPE). Evidence suggests that monitoring pleural pressures during thoracentesis via manometry does not mitigate this problem. In fact, data shows that whether manometry is used or not, most patients do experience clinically significant increase in chest discomfort during thoracentesis. Current methods for draining the pleural fluid include suction- (via vacuum bottles, wall suction or the use of large syringes with a one-way valve tubing system) or gravity-driven thoracentesis. Pressures generated by all suction techniques range from -200 to -500 cmH2O, and far exceed what are considered safe pleural pressures. Accordingly, in case of non-expandable lung, excessively negative pressures may develop quickly, exposing patients to complications. Some clinicians advocate for gravity drainage, which generates less negative pressures in the pleural space (specifically defined as the vertical distance between the catheter and the drainage bag, generally around -50 to -100 cmH20). While this technique is considered standard of care by some as it is potentially more comfortable for patients, it is also likely associated with longer procedures, and is not generally favored by clinicians who in general prefer suction drainage, despite the possible higher risk of complications.The investigators propose to study the impact of gravity- versus suction-driven large volume therapeutic thoracentesis on the development of chest discomfort during the procedure, and consider as secondary endpoints: the duration of the procedure, the amount of pleural fluid drained, the rate of REPE, the rate of pneumothorax ex vacuo. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04159831 -
A Study to Evaluate LTI-01 in Patients With Infected, Non-draining Pleural Effusions
|
Phase 2 | |
Recruiting |
NCT02891642 -
Liquid Biopsy With Immunomagnetic Beads Capture Technique for Malignant Cell Detection in Body Fluid
|
||
Completed |
NCT02232841 -
Electrical Impedance Imaging of Patients on Mechanical Ventilation
|
N/A | |
Completed |
NCT02045641 -
Pleural and Pericardial Effusion Following Open Heart Surgery
|
N/A | |
Completed |
NCT01948076 -
Evaluation of a Pocket-Sized Ultrasound Device As an Aid to the Physical Examination
|
N/A | |
Completed |
NCT01416519 -
Physiotherapy Technique Decreases Respiratory Complications After Cardiac Operation
|
N/A | |
Completed |
NCT01560078 -
Efficacy Study of Thrice Weekly Directly Observed Treatment Short-Course Regimen in Tubercular Pleural Effusion
|
N/A | |
Completed |
NCT04891705 -
Point of Care Ultrasound Lung Artificial Intelligence (AI) Validation Data Collection Study
|
||
Recruiting |
NCT05759117 -
Prospective Evaluation of Patients With Pleural Effusion
|
||
Recruiting |
NCT05910112 -
Prospective Data Collection on Clinical, Radiological and Patient Reported Outcomes After Pleural Intervention
|
||
Completed |
NCT03896672 -
Clinical Implementation of the Use of Positive Pressure in Chest Drainage
|
N/A | |
Active, not recruiting |
NCT06075836 -
AI Assisted Detection of Chest X-Rays
|
||
Recruiting |
NCT03728491 -
Education and Training Competences in Thoracic Ultrasound
|
N/A | |
Completed |
NCT03535883 -
The Safety of Thoracentesis, Tunneled Pleural Catheter, and Chest Tubes in Patients Taking Novel Oral Anti-Coagulants
|
||
Not yet recruiting |
NCT03260088 -
Evaluation Of Pleural Effusion At Assiut University Hospital
|
N/A | |
Completed |
NCT03296280 -
Evaluation of Implementation of a National Point-of-Care Ultrasound Training Program
|
||
Completed |
NCT03661801 -
Novel Pleural Fluid, Biopsy and Serum Biomarkers for the Investigation of Pleural Effusions
|
||
Completed |
NCT01778270 -
Not Invasive Monitoring of Pleural Drainage
|
N/A | |
Terminated |
NCT00402896 -
Malignant Pleural Effusion With ZD6474
|
Phase 2 | |
Recruiting |
NCT00103766 -
Alteplase for Treatment of Empyema and Complicated Parapneumonic Effusion
|
N/A |