View clinical trials related to Plasmacytoma.
Filter by:RATIONALE: Antimicrobial solution comprising trimethoprim-sulfamethoxazole, edetate calcium disodium, and ethanol may help prevent blockages and infections from forming in patients with central venous access catheters or peripheral venous catheters. PURPOSE: This randomized trial is studying an antimicrobial solution or saline solution in maintaining catheter patency and preventing catheter-related blood infections in patients with malignancies.
RATIONALE: Studying samples of semen from cancer survivors in the laboratory may help doctors learn more about changes that occur in DNA and identify biomarkers related to cancer. PURPOSE: This phase I research study is looking at the presence of donor-derived DNA in semen samples form cancer survivors who underwent donor stem cell transplant.
This clinical trial studies massage therapy given by caregiver in treating quality of life of young patients undergoing treatment for cancer. Massage therapy given by a caregiver may improve the quality of life of young patients undergoing treatment for cancer
RATIONALE: Giving low-dose total-body irradiation before a donor stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). PURPOSE: This phase I trial is studying the side effects of donor stem cell transplant after total-body irradiation and to see how well it works in treating patients with relapsed or refractory hematologic cancer or acute myeloid leukemia or acute lymphocytic leukemia in complete remission.
RATIONALE: Gathering information about how often methemoglobinemia occurs in young patients receiving dapsone for hematologic cancer or aplastic anemia may help doctors learn more about the disease and plan the best treatment. PURPOSE: This research study is looking at methemoglobinemia in young patients with hematologic cancer or aplastic anemia treated with dapsone.
Patients with stage-I multiple myeloma are treated with a vaccine made from their own immune cells (dendritic cells) and their own myeloma protein. Vaccinations are given on 5 occasions every 4 weeks. The aim is to induce an immune reaction against the malignant myeloma cells in order to slow down or cure the disease.
Background: - Allogeneic hematopoietic stem cell transplantation (allotransplant) has been used to treat many kinds of cancer that develop in cells from the blood or immune system. After allotransplant, donor cells take over production of the recipient s blood and immune cells, and donor immune cells can directly attack and control tumor. However, for cancers that do not respond to allotransplant, there are no proven cures. - A single treatment with radiation can improve the potency of immune-cell therapies. This is probably because the tumor tissue is damaged in a way that new tumor proteins are exposed, attracting immune cells to the tumor. By giving only a single dose of radiation, the immune cells that are attracted to the tumor are allowed to survive and function in their usual way, traveling throughout the body and educating other immune cells to recognize tumor, and to activate and expand in order to kill the tumor cells. Some research has shown that radiation may have a widespread effect on stimulating the immune system, educating immune cells to recognize and control tumors that have not been radiated. Objectives: - To determine whether a single treatment of radiation will help donor immune cells control cancer after allotransplant without causing excessive side effects. Eligibility: - Recipients: Individuals 18 years of age and older who have blood cancers that have not responded to allotransplant. - Donors: Healthy individuals 18 years of age and older who were previous allotransplant donors for one of the study recipients. Design: - Donors will provide additional blood immune cells, called lymphocytes, through apheresis. Apheresis involves drawing blood, separating out the lymphocytes, and returning the rest of the blood to the donor. - Recipients will receive a single dose of radiation to the greatest amount of tumor that can be irradiated safely. Researchers will intentionally leave some tumor that will not be radiated in order to evaluate whether there is a widespread response to the treatment. - There are two treatment arms on the study. - Arm 1: Study participants who have donor lymphocytes available and who have not had major complications from the allotransplant will be given a dose of donor cells after they receive radiation, to provide an additional boost to the donor immune response. - Arm 2: Study participants who cannot receive donor lymphocytes because their donor is not available, they received an allotransplant from a partially matched relative, or they have had significant complications from the allotransplant - will receive radiation without additional donor lymphocytes. - All recipients will be followed closely for side effects and for tumor response to radiation with or without donor lymphocytes. Additional tests will be performed, including tumor biopsies, bone marrow samples, and blood draws, in order to study the immune effects of radiation and donor lymphocytes. - A separate, control group of allotransplant recipients will not receive radiation. This group will include participants whose transplant doctors plan to use donor lymphocyte therapy alone to control cancer progression. This group will donate blood immune cells through blood draws and apheresis. These cells will be examined to study the immune effects of receiving donor lymphocytes without radiation.
RATIONALE: Studying immune response to flu vaccine in patients who have undergone a stem cell transplant may help doctors plan the best treatment. PURPOSE: This clinical trial is studying flu vaccine to see how well it works in preventing infection in patients who have undergone a stem cell transplant and in healthy volunteers.
RATIONALE: Panobinostat and everolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Giving panobinostat together with everolimus may kill more cancer cells. PURPOSE: This phase I trial is studying the side effects and best dose of panobinostat when given together with everolimus in treating patients with relapsed or refractory lymphoma or multiple myeloma.
RATIONALE: The influenza vaccine may help prevent flu in patients who have undergone stem cell transplant. PURPOSE: This clinical trial is studying how well the influenza vaccine works in preventing flu in patients who have undergone stem cell transplant and in healthy volunteers.