Clinical Trials Logo

Clinical Trial Summary

This study will use magnetic resonance imaging (MRI) and ultrasound images to study how muscles, tendons, and bones work together to cause motion. The procedure is one of several tools being developed to characterize normal and impaired musculoskeletal function, with the goal of developing improved methods of diagnosis and treatment of movement disorders. Healthy normal volunteers must be age 5 to unlimited, with or without joint impairment, may be eligible for this study. Volunteers with joint impairment may not have serious injury to the joint being studied, previous surgery on the joint being studied, or extreme pain at the joint being studied. MRI uses a strong magnet and radio waves to create images of the inside of the body. The subject lies on a long narrow couch inside a metal cylinder (the scanner) for up to 3 hours while the scanner gathers data. Earplugs are worn to muffle loud noises caused by electrical switching of radiofrequency circuits used in the scanning process. A special pad or tube may be placed over or around the region being scanned to improve the quality of the data. The subject will be asked to repeatedly move a specific joint, such as the knee, for brief periods, usually less than 5 minutes. The subject can communicate via intercom with the person performing the study at all times during the procedure, and may request to stop the study at any time. ...


Clinical Trial Description

The overall goal of this technology development initiative is to greatly advance the clinical diagnosis and treatment of musculoskeletal impairments as they relate to joint function. The primary focus of this protocol is to initially develop and ultimately validate a combined set of tools (virtual functional anatomy - VFA) that will enable the accurate and precise measurement, analysis and visualization of three-dimensional (3D) static and dynamic musculoskeletal anatomy (e.g., bone shape, skeletal kinematics, tendon and ligament strain, muscle force, and joint space) from imaging data. We plan to merge and extend our existing MR imaging and analysis capabilities with ultrasound imaging and analysis for the development and implementation of a highly accurate, imaging-based measurement and analysis technique for the non-invasive quantification of complete joint anatomy and tissue dynamics during functional movements. In short, we plan to develop a method for creating 3D digital images of loaded and moving joint tissues (bone, cartilage, muscle, and connective tissues) that reveal joint contact patterns and tissue loads. In conjunction with building this tool, we will evaluate the variability of bone shape across subjects, the sensitivity of defined joint posture (translation and rotation of one bone relative to another) to osteo-based coordinate system definition, and the ability to ultimately use these tools to document and evaluate the function of normal and impaired joint structures (e.g., ACL rupture, patella tracking syndrome...) under simulated conditions experienced during activities of daily living. The principal investigator has previously developed and tested the primary component in the VFA package, cine-phase contrast and fast-phase contrast (fast-PC) MR imaging, demonstrating both to be highly accurate and precise in the measurement of normal 3D knee joint kinematics and biceps femoris strain. Additional investigators have previously developed techniques for imaging musculoskeletal structures using ultrasonography, demonstrating these techniques to be, likewise, highly accurate and precise in the measurement of biomechanical properties of the soft tissues surrounding the knee and the tendons of the quadriceps femoris. Under this protocol we propose to develop additional numerical reconstruction, image analysis, and display methods and test the applicability of fast-PC MR and ultrasound imaging to the study of various normal and impaired joints (e.g., ankle, wrist, and knee). This development process will require data from human volunteers obtained from both static and dynamic MR and ultrasound images. This development process will require data from human subjects obtained from both static and dynamic MR and ultrasound images. This development is being guided by our philosophy that impaired joint function likely occurs due to abnormal bone shape, abnormal musculoskeletal movements and forces, or both abnormal bone shape and musculoskeletal movements and forces. Thus, our long-term vision is to non-invasively quantify the in vivo 3D joint kinematics, bone shapes and tissue loads for both the impaired and normal volunteer populations, translate the methods and findings into interventional research and ultimately into common clinical practice. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT00051857
Study type Observational
Source National Institutes of Health Clinical Center (CC)
Contact Frances Gavelli, Ph.D.
Phone (301) 451-7585
Email gavellif@cc.nih.gov
Status Recruiting
Phase
Start date March 5, 2003

See also
  Status Clinical Trial Phase
Completed NCT04538508 - Radiofrecuency and Supervised Exercise Versus Supervised Exercise in the Treatment of Patellofemoral Pain Syndrome. N/A
Completed NCT03685812 - Validity and Reliability of Autocad Software Assessment of JPS in PFPS
Completed NCT02873143 - 5 Year Follow-up of Adolescents With Knee Pain N/A
Active, not recruiting NCT02114294 - Hip Strengthening Versus Quadriceps Based Training for Patellofemoral Pain Syndrome N/A
Completed NCT02243332 - Dynamic Quadriceps Muscle Stimulation for Treatment of Patellofemoral Pain N/A
Completed NCT01696162 - Conventional Home Exercise Programs Versus Electronic Home Exercise Versus Artificial Intelligence "Virtual Therapy" for Anterior Knee Pain N/A
Completed NCT01434966 - Changes in Quadriceps Function Following Local or Distant Interventions in Individuals With Patellofemoral Pain N/A
Not yet recruiting NCT05327569 - The Efficacy of Myofascial Chain Release Techniques in Patients With Patellofemoral Pain Syndrome. N/A
Completed NCT06060730 - Measurement Properties of the Turkish Version of the Patellofemoral Pain and Osteoarthritis Subscale of the KOOS
Completed NCT03281421 - Immediate Effects of Ankle Mobilization on Dorsiflexion Range of Motion in Women With Patellofemoral Pain. N/A
Recruiting NCT06130696 - Clamshell Exercise in Patellofemoral Syndrome. N/A
Completed NCT03201133 - Clinical Subgroups in Patellofemoral Pain Syndrome
Completed NCT05959148 - Adjuvant Effects of Monochromatic Infrared Energy in Rehabilitation of Adolescents With Patellofemoral Pain Syndrome N/A
Completed NCT02646579 - Effects of Dry Needling Using Spinal and Peripheral Sites Versus Peripheral Sites Only N/A
Completed NCT00978003 - Vasti Control of Patellofemoral Kinematics in Asymptomatic Volunteer
Not yet recruiting NCT05383781 - Effect of Short Foot Exercise in Treatment of Patients With Patellofemoral Pain Syndrome N/A
Not yet recruiting NCT05083897 - Effect of Hip Adductors Isometric Contraction on Knee Extensors Isokinetic Torque in Patellofemoral Pain Syndrome
Withdrawn NCT03157271 - The Addition of Dry Needling in the Treatment of Patients With Patellofemoral Pain Syndrome N/A
Enrolling by invitation NCT02548988 - Selective Neuromuscular Electrical Stimulation on VMO N/A
Completed NCT01975311 - Effect of Lower Back Treatment in People With Patellofemoral Pain Syndrome. N/A