Clinical Trials Logo

Paraplegia clinical trials

View clinical trials related to Paraplegia.

Filter by:

NCT ID: NCT05008874 Active, not recruiting - AMN Clinical Trials

Study of Disease Progression in Adults With Inherited Forms of Spastic Paraplegia

CYGNET
Start date: June 21, 2021
Phase:
Study type: Observational

The course of AMN-related disabilities over time is poorly or incompletely understood due to a limited number of patients and lack of treatments. This study will help obtain a better understanding of the progression of disease with AMN and facilitate efficient clinical development of future interventional medications.

NCT ID: NCT04912609 Completed - Clinical trials for Hereditary Spastic Paraplegia

Trehalose Administration in Subjects With Spastic Paraplegia 11 (3AL-SPG11)

3AL-SPG11
Start date: June 30, 2021
Phase:
Study type: Observational

Hereditary spastic paraparesis type 11 (SPG11) is caused by mutations in the SPG11 gene that produces spatacsin, a protein involved in lysosomal function.

NCT ID: NCT04875416 Recruiting - Clinical trials for Amyotrophic Lateral Sclerosis

Phenotype, Genotype and Biomarkers 2

PGB2
Start date: January 8, 2021
Phase:
Study type: Observational

The purpose of this study is to learn more about amyotrophic lateral sclerosis (ALS) and other related neurodegenerative diseases, including frontotemporal dementia (FTD), primary lateral sclerosis (PLS), hereditary spastic paraplegia (HSP), progressive muscular atrophy (PMA) and multisystem proteinopathy (MSP). More precisely, the investigator wants to identify the links that exist between the disease phenotype (phenotype refers to observable signs and symptoms) and the disease genotype (genotype refers to your genetic information). The investigator also wants to identify biomarkers of ALS and related diseases.

NCT ID: NCT04807764 Recruiting - Clinical trials for Spinal Cord Injuries

Transspinal Stimulation Plus Locomotor Training for SCI

Start date: August 1, 2021
Phase: N/A
Study type: Interventional

Locomotor training is often used with the aim to improve corticospinal function and walking ability in individuals with Spinal Cord Injury. Excitingly, the benefits of locomotor training may be augmented by noninvasive electrical stimulation of the spinal cord and enhance motor recovery at SCI. This study will compare the effects of priming locomotor training with high-frequency noninvasive thoracolumbar spinal stimulation. In people with motor-incomplete SCI, a series of clinical and electrical tests of brain and spinal cord function will be performed before and after 40 sessions of locomotor training where spinal stimulation is delivered immediately before either lying down or during standing.

NCT ID: NCT04768166 Completed - Clinical trials for Hereditary Spastic Paraparesis

Testing Miglustat Administration in Subjects With Spastic Paraplegia 11

TreatSPG11
Start date: June 15, 2021
Phase: Phase 2
Study type: Interventional

Hereditary spastic paraparesis type 11 (SPG11) is caused by mutations in the SPG11 gene that produces spatacsin, a protein involved in lysosomal function. Studies performed in skin cells (fibroblasts) from SPG11 patients, mice and zebrafish models of the disease showed that the material accumulated in the lysosomes is made of glycosphingolipids (GSL). Miglustat is a drug that inhibits an enzyme called glucosylceramide synthetase (GCS) which is used for the production of GSL. Miglustat, therefore, helps to delay the production of GSL. This study aims to collect preliminary data on the safety of miglustat on the SPG11 disease and to assess biomarkers.

NCT ID: NCT04736849 Recruiting - Clinical trials for Spinal Cord Injuries

Epidural and Dorsal Root Stimulation in Humans With Spinal Cord Injury

Start date: September 24, 2021
Phase: N/A
Study type: Interventional

A study to compare electrophysiologic activity of epidural stimulation and dorsal root ganglion stimulation, as well as quantify changes in motor performance with both types of stimulation over the course of 10 rehabilitation sessions.

NCT ID: NCT04712812 Recruiting - Clinical trials for Hereditary Spastic Paraplegia

Registry and Natural History Study for Early Onset Hereditary Spastic Paraplegia

HSP
Start date: April 27, 2020
Phase:
Study type: Observational [Patient Registry]

The Registry and Natural History Study for Early Onset Hereditary Spastic Paraplegia (HSP) is focused on gathering longitudinal clinical data as well as biological samples (skin and/or blood and/or saliva) from male or female patients who exhibited onset of HSP symptoms at 18 years old or younger with (1) a clinical diagnosis of hereditary spastic paraplegia and/or (2) the presence of variants in HSP related genes and/or be a relative of a person with such a diagnosis. Currently, the treatment for this disorder is generally symptomatic and available therapies improve quality of life, but are grossly inefficient in slowing the disease progression. Access to the registry information will be limited to the study staff who are responsible for recruitment and maintenance of the registry. We hope that recruitment into registry for studies will advance knowledge of the causes, clinical course, diagnosis and treatment of these conditions.

NCT ID: NCT04627441 Withdrawn - Paraplegia, Spinal Clinical Trials

Transcutaneous and Epidural Stimulation in SCI

Service-Line
Start date: December 16, 2022
Phase: N/A
Study type: Interventional

The study seeks to improve the scientific understanding of how two electrical stimulation techniques, one which delivers electricity to the skin surface over the spine (transcutaneous electrical spinal stimulation [TESS]) and another which is implanted onto the dura mater of the spinal cord (epidural electrical stimulation [EES]), facilitate spinal circuitry to enable function after SCI.

NCT ID: NCT04624607 Completed - Clinical trials for Spinal Cord Injuries

Transspinal-Transcortical Paired Stimulation for Neuroplasticity and Recovery After SCI

Start date: January 5, 2018
Phase: N/A
Study type: Interventional

People with spinal cord injury (SCI) have motor dysfunction that results in substantial social, personal, and economic costs. Uncontrolled muscle spasticity and motor dysfunction result in disabilities that significantly reduce quality of life. Several rehabilitation interventions are utilized to treat muscle spasticity and motor dysfunction after SCI in humans. However, because most interventions rely on sensory afferent feedback that is interpreted by malfunctioned neuronal networks, rehabilitation efforts are greatly compromised. On the other hand, changes in the function of nerve cells connecting the brain and spinal cord have been reported following repetitive electromagnetic stimulation delivered over the head and legs or arms at specific time intervals. In addition, evidence suggests that electrical signals delivered to the spinal cord can regenerate spinal motor neurons in injured animals. A fundamental knowledge gap still exists on neuroplasticity and recovery of leg motor function in people with SCI after repetitive transspinal cord and transcortical stimulation. In this project, it is proposed that repetitive pairing of transspinal cord stimulation with transcortical stimulation strengthens the connections between the brain and spinal cord, decreases ankle spasticity, and improves leg movement. People with motor incomplete SCI will receive transspinal - transcortical paired associative stimulation at rest and during assisted stepping. The effects of this novel neuromodulation paradigm will be established via clinical tests and noninvasive neurophysiological methods that assess the pathways connecting the brain with the spinal cord.

NCT ID: NCT04586777 Terminated - Clinical trials for Spinal Cord Injuries

Effects of Transvertebral Direct Current Stimulation in Humans

Start date: January 15, 2014
Phase: N/A
Study type: Interventional

This study will evaluate the effects of non-invasive stimulation of the spinal cord in people with spinal cord injury.