View clinical trials related to Paranasal Sinus Neoplasms.
Filter by:This study is being done to test a new treatment plan for large tumors in the sinus or nasal cavity that will include endoscopic surgery plus chemotherapy and proton-beam radiation therapy.
The purpose of this study is to demonstrate that adaptive radiotherapy (ART) in head and neck cancer patients are comparable to historical controls in head and neck patients undergoing standard intensity-modulated radiation therapy (IMRT) without ART.
This pilot research trial studies circulating tumor deoxyribonucleic acid (DNA) in predicting outcomes in patients with stage IV head and neck cancer or stage III-IV non-small cell lung cancer. Studying circulating tumor DNA from patients with head and neck or lung cancer in the laboratory may help doctors predict how well patients will respond to treatment.
This phase I/II trial studies the side effects and the best dose of sorafenib tosylate and docetaxel when given together with cisplatin and to see how well they work in treating patients with recurrent or metastatic squamous cell carcinoma of the head and neck. Drugs used in chemotherapy, such as cisplatin and docetaxel, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Sorafenib tosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Sorafenib tosylate may also help cisplatin and docetaxel work better by making tumor cells more sensitive to the drugs. Giving sorafenib tosylate, cisplatin, and docetaxel may be an effective treatment for squamous cell carcinoma of the head and neck.
This pilot randomized phase I/II trial studies the side effects and best dose of PI3K inhibitor BKM120 when given together with cetuximab and to see how well it works in treating patients with recurrent or metastatic head and neck cancer. PI3K inhibitor BKM120 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumors to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Giving PI3K inhibitor BKM120 together with cetuximab may kill more tumor cells
This phase I trial studies the side effects and best dose of cetuximab when given together with everolimus in treating patients with metastatic or recurrent colon cancer or head and neck cancer. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of the tumor to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Everolimus may stop the growth of tumor cells by blocking blood flow to the tumor. Giving cetuximab together with everolimus may be an effective treatment for colon cancer or head and neck cancer
This randomized phase I/II trial studies the side effects and best way to give lyophilized black raspberries in preventing oral cancer in high-risk patients previously diagnosed with stage I-IV or in situ head and neck cancer. Chemoprevention is the use of certain drugs to keep cancer from forming. The use of lyophilized black raspberries may prevent oral cancer. Studying samples of oral cavity scrapings, blood, urine, and saliva in the laboratory from patients receiving lyophilized black raspberries may help doctors learn more about changes that occur in DNA and the effect of lyophilized back raspberries on biomarkers.
This phase I trial studies the side effects and best dose of TLR8 Agonist VTX-2337 when given together with cetuximab in treating patients with locally advanced, recurrent, or metastatic squamous cell cancer of the head and neck (SCCHN). Biological therapies, such as TLR8 Agonist VTX-2337 may stimulate the immune system in different ways and stop tumor cells from growing. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Giving TLR8 Agonist VTX-2337 together with cetuximab may kill more tumor cells.
This phase II trial is studying how well giving carboplatin, paclitaxel, cetuximab, and erlotinib hydrochloride together works in treating patients with metastatic or recurrent squamous cell head and neck cancer. Drugs used in chemotherapy, such as carboplatin and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Erlotinib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving combination chemotherapy together with cetuximab and erlotinib hydrochloride may kill more tumor cells.
RATIONALE: Drugs used in chemotherapy, such as capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Lapatinib ditosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving capecitabine together with lapatinib ditosylate may kill more tumor cells. PURPOSE: This phase II trial is studying how well giving capecitabine and lapatinib ditosylate together works in treating patients with squamous cell cancer of the head and neck.