Out-Of-Hospital Cardiac Arrest Clinical Trial
Official title:
Effect of Remote Ischemic Post-conditioning on Neurologic and Cardiac Recovery in Out-of-hospital Cardiac Arrest
Verified date | January 2021 |
Source | Chonnam National University Hospital |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Ischemia-reperfusion leads to mitochondrial injury, ion-pump injury, cell membrane damage, cytotoxic edema, and excessive oxygen free radical formation, and eventually destroys cells. Cardiac arrest is an example of global ischemia; after spontaneous circulation is restored, ischemia-reperfusion injury develops in cardiac arrest survivors. Remote ischemic postconditioning (RIPoC) involves the application of brief, reversible episodes of ischemia and reperfusion to a vascular bed or tissue, rendering remote tissues and organs resistant to ischemia-reperfusion injury. Accordingly, RIPoC has been suggested as adjunctive therapy to mitigate ischemia-reperfusion injury. RIPoC applied by repeated brief inflation-deflation of a blood pressure cuff protects against myocardial injury, and has been proven effective in acute myocardial infarction. This study aims to perform a randomized controlled trial to determine whether RIPoC has a neuroprotective effect and aids in myocardial recovery in out-of-hospital cardiac arrest patients after restoration of spontaneous circulation. Neuron-specific enolase (NSE) at 48 hours after restoration of spontaneous circulation will be measured as a primary outcome.
Status | Terminated |
Enrollment | 58 |
Est. completion date | October 21, 2019 |
Est. primary completion date | October 21, 2019 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 19 Years and older |
Eligibility | Inclusion Criteria: - Adult (19 years and older) - comatose out-of-hospital cardiac arrest with sustained restoration of spontaneous circulation - Undergoing targeted temperature management - Time of enrollment = 6hrs from restoration of spontaneous circulation - cardiac arrest from medical cause (cardiac or other medical cause) Exclusion Criteria: - Pre-existing dementia, brain injury, or dependence on others (cerebral performance category scale greater than 3) - Traumatic etiology for cardiac arrest - Protected population (pregnant, prisoner) - in-hospital cardiac arrest - Known bleeding diathesis - suspected or confirmed acute intracranial hemorrhage - suspected or confirmed acute ischemic stroke - Known limitations in therapy and do-not-resuscitate order - known disease making 180-day survival unlikely - >6 hours from restoration of spontaneous circulation to randomization - cardiac arrest from asphyxia (hanging, foreign body airway obstruction), drowning, drug overdose, or electrocution - peripheral vascular disease (Deep vein thrombosis, arteriosclerosis obliterans) - systolic blood pressure < 80 mmHg in spite of fluid loading/vasopressor and/or inotropic medication |
Country | Name | City | State |
---|---|---|---|
Korea, Republic of | Chonnam National University Hospital | Gwangju |
Lead Sponsor | Collaborator |
---|---|
Chonnam National University Hospital |
Korea, Republic of,
Ahmed RM, Mohamed el-HA, Ashraf M, Maithili S, Nabil F, Rami R, Mohamed TI. Effect of remote ischemic preconditioning on serum troponin T level following elective percutaneous coronary intervention. Catheter Cardiovasc Interv. 2013 Nov 1;82(5):E647-53. do — View Citation
Crimi G, Pica S, Raineri C, Bramucci E, De Ferrari GM, Klersy C, Ferlini M, Marinoni B, Repetto A, Romeo M, Rosti V, Massa M, Raisaro A, Leonardi S, Rubartelli P, Oltrona Visconti L, Ferrario M. Remote ischemic post-conditioning of the lower limb during p — View Citation
Davies WR, Brown AJ, Watson W, McCormick LM, West NE, Dutka DP, Hoole SP. Remote ischemic preconditioning improves outcome at 6 years after elective percutaneous coronary intervention: the CRISP stent trial long-term follow-up. Circ Cardiovasc Interv. 201 — View Citation
Hoole SP, Heck PM, Sharples L, Khan SN, Duehmke R, Densem CG, Clarke SC, Shapiro LM, Schofield PM, O'Sullivan M, Dutka DP. Cardiac Remote Ischemic Preconditioning in Coronary Stenting (CRISP Stent) Study: a prospective, randomized control trial. Circulati — View Citation
Iliodromitis EK, Kyrzopoulos S, Paraskevaidis IA, Kolocassides KG, Adamopoulos S, Karavolias G, Kremastinos DT. Increased C reactive protein and cardiac enzyme levels after coronary stent implantation. Is there protection by remote ischaemic preconditioni — View Citation
Luo SJ, Zhou YJ, Shi DM, Ge HL, Wang JL, Liu RF. Remote ischemic preconditioning reduces myocardial injury in patients undergoing coronary stent implantation. Can J Cardiol. 2013 Sep;29(9):1084-9. doi: 10.1016/j.cjca.2012.11.022. Epub 2013 Feb 12. — View Citation
McNally B, Robb R, Mehta M, Vellano K, Valderrama AL, Yoon PW, Sasson C, Crouch A, Perez AB, Merritt R, Kellermann A; Centers for Disease Control and Prevention. Out-of-hospital cardiac arrest surveillance --- Cardiac Arrest Registry to Enhance Survival ( — View Citation
Munk K, Andersen NH, Schmidt MR, Nielsen SS, Terkelsen CJ, Sloth E, Bøtker HE, Nielsen TT, Poulsen SH. Remote Ischemic Conditioning in Patients With Myocardial Infarction Treated With Primary Angioplasty: Impact on Left Ventricular Function Assessed by Co — View Citation
Prasad A, Gössl M, Hoyt J, Lennon RJ, Polk L, Simari R, Holmes DR Jr, Rihal CS, Lerman A. Remote ischemic preconditioning immediately before percutaneous coronary intervention does not impact myocardial necrosis, inflammatory response, and circulating end — View Citation
Rentoukas I, Giannopoulos G, Kaoukis A, Kossyvakis C, Raisakis K, Driva M, Panagopoulou V, Tsarouchas K, Vavetsi S, Pyrgakis V, Deftereos S. Cardioprotective role of remote ischemic periconditioning in primary percutaneous coronary intervention: enhanceme — View Citation
Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, de Simone G, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Greenlund KJ, Hailpern SM, Heit JA, Ho PM, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth L — View Citation
Sloth AD, Schmidt MR, Munk K, Kharbanda RK, Redington AN, Schmidt M, Pedersen L, Sørensen HT, Bøtker HE; CONDI Investigators. Improved long-term clinical outcomes in patients with ST-elevation myocardial infarction undergoing remote ischaemic conditioning — View Citation
Xu X, Zhou Y, Luo S, Zhang W, Zhao Y, Yu M, Ma Q, Gao F, Shen H, Zhang J. Effect of remote ischemic preconditioning in the elderly patients with coronary artery disease with diabetes mellitus undergoing elective drug-eluting stent implantation. Angiology. — View Citation
Zografos TA, Katritsis GD, Tsiafoutis I, Bourboulis N, Katsivas A, Katritsis DG. Effect of one-cycle remote ischemic preconditioning to reduce myocardial injury during percutaneous coronary intervention. Am J Cardiol. 2014 Jun 15;113(12):2013-7. doi: 10.1 — View Citation
* Note: There are 14 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Other | microRNA | only in patients with shockable rhythm | at 48 hour after restoration of spontaneous circulation | |
Other | neurologic outcome | cerebral performance category scale 1, 2, 3, 4, 5 | six month after cardiac arrest | |
Primary | neuron specific enolase | expressed in ng/ml | at 48 hour after restoration of spontaneous circulation | |
Secondary | change over troponin-I | troponin-I will be expressed in ng/ml | at 24 hour and 48 hour after restoration of spontaneous circulation | |
Secondary | change over creatinin kinase-MB | CK-MB will be expressed in ng/ml | at 24 hour and 48 hour after restoration of spontaneous circulation | |
Secondary | neurologic outcome | cerebral performance category scale 1, 2, 3, 4, 5 | an average of 3 weeks after restoration of spontaneous circulation |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05434910 -
Blood Pressure and Cerebral Blood Flow After Cardiac Arrest
|
N/A | |
Active, not recruiting |
NCT03700125 -
Pre-hospital ECMO in Advanced Resuscitation in Patients With Refractory Cardiac Arrest. ( SUB30 )
|
N/A | |
Completed |
NCT02527694 -
CPR Quality Between Flexible Stretcher and Standard Stretcher in OHCA
|
N/A | |
Completed |
NCT02899507 -
Prophylactic Antibiotics in Comatose Survivors of Out-of-hospital Cardiac Arrest
|
Phase 4 | |
Recruiting |
NCT02184468 -
Survival Study After Out-of-hospital Cardiac Arrest
|
N/A | |
Completed |
NCT04085692 -
Dispatcher-Assisted CPR: Low-Dose, High-Frequency Simulation-Based Training
|
N/A | |
Recruiting |
NCT05029167 -
REstrictive Versus LIberal Oxygen Strategy and Its Effect on Pulmonary Hypertension After Out-of-hospital Cardiac Arrest (RELIEPH-study)
|
N/A | |
Completed |
NCT04080986 -
DOuble SEquential External Defibrillation for Refractory VF
|
N/A | |
Completed |
NCT04058925 -
Tissue Oxygenation During Cardiopulmonary Resuscitation as a Predictor of Return of Spontaneous Circulation
|
||
Enrolling by invitation |
NCT05113706 -
Does Bystanders Emotional State Influence Dispatcher-assisted Cardiopulmonary?Resuscitation
|
||
Completed |
NCT04219306 -
Machine Learning Assisted Recognition of Out-of-Hospital Cardiac Arrest During Emergency Calls.
|
N/A | |
Completed |
NCT03881865 -
P25/30 SSEPs and Neurological Prognosis After Cardiac Arrest
|
||
Recruiting |
NCT04993716 -
Epidemiological Study on the Management of Out-of-hospital Cardiac Arrest Survivors in Champagne ArDEnnes
|
||
Completed |
NCT05062785 -
Dose-Finding Study of Intranasal Insulin in Healthy Participants Insulin in Healthy Participants
|
Phase 1 | |
Recruiting |
NCT06122337 -
Systemic Evaluation of the Etiologies of Young Adults With Non-traumatic Out-of-hospital Cardiac Arrest
|
||
Not yet recruiting |
NCT04584463 -
Factors Associated With CPC 1-2 in 110 Patients Admitted in French ICU for a Myocardial Infarction Complicated by an OHCA.
|
||
Recruiting |
NCT03355885 -
Early-onset Pneumonia After Out-of-hospital Cardiac Arrest
|
N/A | |
Recruiting |
NCT05132387 -
Wroclaw Out-Of-Hospital Cardiac Arrest Registry
|
||
Recruiting |
NCT02827422 -
A Prospective, Multicenter Registry With Targeted Temperature Management After Out-of-hospital Cardiac Arrest in Korea
|
N/A | |
Completed |
NCT02646046 -
Combining Performance of Call EMS and Simultaneous Chest Compressions in a Lone Rescuer CPR
|
N/A |