View clinical trials related to Oropharyngeal Neoplasms.
Filter by:EGFR is a potential target for new anticancer therapy in head and neck squamous cell carcinoma, because blocking the EGFR by a monoclonal antibody results in inhibition of the stimulation of the receptor, therefore, in inhibition of cell proliferation, enhanced apoptosis, and reduced angiogenesis, invasiveness and metastases. The study hypothesis is that neo-adjuvant Erbitux-based chemotherapy followed by surgery and radiotherapy for locally advanced oral/oropharyngeal cancer could benefit the patients on prognosis. The endpoints of this study are the pathological complete response after neo-adjuvant Erbitux-based chemotherapy followed by surgery and radiotherapy, the survival rate, and the safety.
The main goal of this phase of the study is to determine if objectively assessed Physical Activity (PA) levels in advanced-cancer patients are associated with health care provider (HCP)-assessed ECOG performance status and overall survival. The purpose is to advance the evidence-base for incorporating objective assessment of Physical Activity (PA) in the context of performance status assessment in advanced cancer patients.
The purpose of this study is to investigate the role of the immune system in the response of squamous cell cancers of the head and neck to treatment that includes radiation therapy. Current research demonstrates that several natural immune cells and molecules affect the way the body's immune system interacts with a cancerous growth. Some cancers may be related to infection with a virus, such as the Human Papilloma Virus (HPV). Studying the activity of the immune system in head and neck cancers, especially cancers related to HPV infections, can provide valuable information to better understand the body's interaction with cancer cells.
This research is being done to understand more about a sexually transmitted virus called Human papillomavirus (HPV) in people with oropharyngeal cancer and their partners.
This phase I trial studies the side effects and best dose of TLR8 Agonist VTX-2337 when given together with cetuximab in treating patients with locally advanced, recurrent, or metastatic squamous cell cancer of the head and neck (SCCHN). Biological therapies, such as TLR8 Agonist VTX-2337 may stimulate the immune system in different ways and stop tumor cells from growing. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Giving TLR8 Agonist VTX-2337 together with cetuximab may kill more tumor cells.
This phase II trial is studying how well giving carboplatin, paclitaxel, cetuximab, and erlotinib hydrochloride together works in treating patients with metastatic or recurrent squamous cell head and neck cancer. Drugs used in chemotherapy, such as carboplatin and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Erlotinib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving combination chemotherapy together with cetuximab and erlotinib hydrochloride may kill more tumor cells.
Severe acute and late dysphagia is now considered as a dose-limiting toxicity of radio(chemo)therapy for head and neck cancer that significantly affects patients' quality of life. We propose to preserve swallowing function by: - adapting (individualizing) treatment (intensity-modulated radiotherapy: IMRT) to per-treatment changes occurring in the tumor and surrounding organs and tissues; - reducing the volumes of elective neck, that may result in significant decrease of severe acute and late dysphagia.
RATIONALE: Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. CT and PET scans and treatment-planning systems may help in planning radiation therapy. Drugs used in chemotherapy, such as cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving radiation therapy together with cisplatin may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of intensity-modulated image guided adaptive radiation therapy when given together with cisplatin in treating patients with locally advanced head and neck squamous cell cancer
RATIONALE: Transoral robotic surgery (TORS) is a less invasive type of surgery for head and neck cancer and may have fewer side effects and improve recovery. PURPOSE: This clinical trial studies how transoral robotic surgery works in treating patients with benign or stage I-IV head and neck cancer.
This phase I clinical trial is studying the side effects and the best dose of vorinostat when given together with paclitaxel and carboplatin in treating patients with metastatic or recurrent solid tumors and human immunodeficiency virus (HIV) infection. Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as paclitaxel and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving vorinostat together with paclitaxel and carboplatin may kill more tumor cells. NOTE: An administrative decision was made by NCI to halt further study of vorinostat in this specific patient population as of February 1, 2013. No patients remain on vorinostat. Going forward this study will determine the safety and tolerability of the paclitaxel and carboplatin combination in this patient population.