Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT00173381
Other study ID # 9461700657
Secondary ID
Status Recruiting
Phase N/A
First received September 12, 2005
Last updated March 29, 2006
Start date August 2004

Study information

Verified date June 2005
Source National Taiwan University Hospital
Contact Ching-Ting Tan, MD, PhD
Phone 886-2-23123456
Email christin@ha.mc.ntu.edu.tw
Is FDA regulated No
Health authority Taiwan: Department of Health
Study type Observational

Clinical Trial Summary

The purpose of this study is to investigate the role of lymphangiogenesis in the metastasis of head and neck cancer.


Description:

Head and neck cancer is a major, worldwide cause of morbidity and mortality. As long as the neoplasm is confined to its organ of origin, the patient can be cured through surgical removal of the tumor mass. Unfortunately, many cancers metastasize to other sites in the body, and metastasis is the leading cause of death in cancer patients. In principle, cancer cells can spread within the body by different mechanisms, such as direct invasion of surrounding tissues (per continuitatem), spread via the blood vascular system (hematogenous metastasis) and spread via the lymphatic system (lymphatic metastasis). Tumor cells can invade either the blood or lymphatic vessels to access the general circulation and then establish themselves in other tissues. Clinicopathological data suggest that the lymphatics are an initial route for the spread of solid tumors. Infiltration of lymphatic vessels by tumor cells has been found at the periphery of many experimental and human tumors, and the lymphatic system has been recognized as a conduit for tumor cell dissemination. Though the significance of angiogenesis for tumor progression has been well documented, the molecular mechanisms regulating the growth and function of lymphatic vessels are largely unknown.

Vascular endothelial growth factors, first identified in 1989, are well-known angiogenic agents and targets for anti-cancer therapies. Now it appears that VEGF-C, one recently-cloned member of the vascular endothelial growth factor (VEGF) family, is also involved in developmental and tumor-induced lymphangiogenesis. VEGF signals through two tyrosine kinase receptors, VEGFR-1 and VEGFR-2, which are expressed predominantly but not exclusively on vascular endothelial cells. As neither VEGFR-1 nor VEGFR-2 appears to be highly expressed in lymphatic endothelium, it was not surprising that a third VEGF receptor, VEGFR-3, was found to be predominantly expressed on lymphatic vessels during development. What was surprising, however, was that VEGF was not found to bind to VEGFR-3. Instead, VEGF-C was discovered to be ligand for VEGFR-3. Research groups provide direct evidence that VEGF-C is not only an important regulator of lymph vessel growth (lymphangiogenesis) in vivo but it also enhances lymphatic metastasis. Using experimental approaches, Mäkinen et al., Skobe et al., as well as Mandriota et al. demonstrate an important role of VEGFR-3 and its ligand, VEGF-C, in developmental and tumor-induced lymphangiogenesis. In normal adult human tissues, the VEGF-C receptor VEGFR-3 (FLT-4) is predominantly expressed by lymphatic endothelia. Expression of VEGF-C occurs in a variety of human tumors such as breast, colon, lung, thyroid, gastric, squamous cell cancers, mesotheliomas, neuroblastomas, sarcomas and melanomas. Moreover, expression of VEGF-C mRNA has recently been shown to correlate with the rate of metastasis to lymph nodes in breast, colorectal, gastric, thyroid, lung and prostate cancers. To date, however, lymphangiogenesis has not been causally linked to tumor metastasis.

Cyclooxygenase-2 (COX-2) enzyme catalyzes the synthesis of prostaglandins. COX-2 is an immediate-early response gene induced by inflammation, growth factors, tumor promoters, oncogenes, and carcinogens. Increased levels of COX-2 may contribute to carcinogenesis by modulating xenobiotic metabolism, apoptosis, immune surveillance, and angiogenesis. Any significant increase in tumor mass must be preceded by an increase in vascular supply to deliver nutrients and oxygen to the tumor. Recently, levels of COX-2 were found to correlate with both VEGF expression and tumor vascularization in HNSCC. This finding in human tissues is consistent with prior evidence that overexpression of COX-2 in epithelial cells led to enhanced production of VEGF and the formation of capillary-like networks. Although COX-2 contributes to the regulation of angiogenesis, its role in lymphangiogenesis is not clear.

IL-6 is a secreted, multifunctional glycoprotein. Through binding to α-chain (IL-6-R, gp80) and subsequently recruiting the β-chain (gp130) of the receptor, IL-6 performs various biological functions. The diversity of IL-6 signaling mediated via gp130 explains its functional pleiotropy. IL-6 regulates inflammatory reactions, immune responses, hepatic acute-phase protein synthesis, and several other important physiological processes. Interestingly, the influence of IL-6 in human cancers is varied depending on the cell types. For example, IL-6 has been demonstrated to promote growth of multiple myeloma, Kaposi's sarcoma, and prostatic cancer cells, while inhibiting the proliferation of lung and breast cancer cells. Previous investigations have confirmed that IL-6 is important in both physiological and pathological angiogenesis. Additionally, recent study supports the hypothesis that IL-6 facilitates tumorigenesis of cervical cancer via VEGF-mediated angiogenesis. Nevertheless, whether IL-6 could regulate the expression of VEGF-C and what is its role in lymphangiogenesis still need to be clarified.

Inhibition of angiogenesis is currently considered one of the most promising therapeutic strategies to inhibit cancer growth because it presumably can act on any tumor type, does not induce resistance of tumor cells (and can therefore be used in repeated therapeutic cycles) and has little effect on normal tissues. It now needs to be determined whether the same holds true for tumor lymphangiogenesis.

Metastases of head and neck cancers occur frequently through the lymphatic system, and the extent of lymph node involvement is a key prognostic factor for the diseases. In this study, we will conduct a systematic analysis of VEGF-C, COX-2 and IL-6 expressions and will try to find the correlation between their expressions, lymphatic metastases and patient survival. Next, we will investigate the relationship between VEGF-C, COX-2 and IL-6, and further clarify their effects on tumor growth. Undoubtedly, the findings of this study will help us understand whether lymphangiogenesis could be a focal point of anti-cancer research. If HNSCC tumors that express high levels of VEGF-C show a consistently higher incidence of lymphatic metastasis, then inhibition of VEGFR-3 function may be a novel approach to inhibit lymphatic metastasis in patients.


Recruitment information / eligibility

Status Recruiting
Enrollment 100
Est. completion date
Est. primary completion date
Accepts healthy volunteers No
Gender Both
Age group 30 Years to 75 Years
Eligibility Inclusion Criteria:

- Head and neck squamous cell carcinoma

Exclusion Criteria:

- Other pathological type

Study Design

Allocation: Random Sample, Observational Model: Natural History, Time Perspective: Longitudinal


Locations

Country Name City State
Taiwan National Taiwan University Hospital Taipei

Sponsors (1)

Lead Sponsor Collaborator
National Taiwan University Hospital

Country where clinical trial is conducted

Taiwan, 

See also
  Status Clinical Trial Phase
Recruiting NCT06031337 - Salivary Expression of SOX7 in Oral Squamous Cell Carcinoma: Diagnostic Accuracy Study
Completed NCT00158678 - IMRT Plus Cisplatin Versus Conventional Radiotherapy Plus Cisplatin in Stage III-IV HNSCC Phase 3
Completed NCT00933387 - A Study of Neoadjuvant Bio-C/T Followed by Concurrent Bio-R/T in High-risk Locally Advanced Oral Squamous Cell Carcinoma Phase 2
Enrolling by invitation NCT05030597 - Exploring the Application Value of PET Molecular Imaging Targeting FAP in Oral Squamous Cell Carcinoma N/A
Completed NCT03682562 - Diagnostic Accuracy of Salivary DNA Integrity Index in Oral Malignant and Premalignant Lesions
Recruiting NCT03684707 - Cancer Chemoprevention by Metformin Hydrochloride Compared to Placebo in Oral Potentially Malignant Lesions Phase 4
Recruiting NCT06130332 - Neoadjuvant Tirellizumab Combined With Chemotherapy for Early Oral Squamous Cell Carcinoma(HNC-SYSU-004) Phase 2
Recruiting NCT04372914 - Prevention of Oral DNA Damage by Black Raspberries N/A
Active, not recruiting NCT03529422 - Durvalumab With Radiotherapy for Adjuvant Treatment of Intermediate Risk SCCHN Phase 2
Recruiting NCT03686020 - Sensitivity and Specificity of Serum and Salivary CYFRA21-1 in the Detection of Malignant Transformation in Oral Potentially Malignant Mucosal Lesions (Diagnostic Accuracy Study)
Not yet recruiting NCT06060288 - Diagnostic Accuracy of Mobile Phone Imaging Compared to Conventional Clinical Examination for Oral Cancer Screening
Withdrawn NCT00951470 - Complete Decongestive Therapy (CDT) for Treatment of Head and Neck Lymphedema N/A
Completed NCT00964977 - Effectiveness of Adjuvant Radiotherapy in Small Oropharyngeal Squamous Cell Cancer and Single Lymph Node Metastasis. Phase 3
Completed NCT01418118 - Assessment of the Effects of Pressors on Graft Blood Flow After Free Tissue Transfer Surgery Phase 4
Active, not recruiting NCT00232960 - Postoperative Radiotherapy According to Molecular Analysis of Surgical Margins of Oral and Oropharyngeal SCC N/A
Recruiting NCT05429099 - Mandibular Reconstruction Preplanning (ViPMR) Phase 2/Phase 3
Completed NCT04614896 - Use of Ultrasound for Measuring Size of Oral Tongue Cancers N/A
Recruiting NCT03685409 - Cancer Chemoprevention by Metformin Hydrochloride in Oral Potentially Malignant Lesions Phase 3
Completed NCT00402779 - Erlotinib Prevention of Oral Cancer (EPOC) Phase 3
Recruiting NCT05153733 - Improved Implant for Reconstruction Purposes After Mandibular Resection N/A