Clinical Trials Logo

Oligoastrocytoma clinical trials

View clinical trials related to Oligoastrocytoma.

Filter by:

NCT ID: NCT04623931 Recruiting - Glioblastoma Clinical Trials

Chemotherapy and Radiation Therapy for the Treatment of IDH Wildtype Gliomas or Non-histological (Molecular) Glioblastomas

Start date: January 30, 2020
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well temozolomide and radiation therapy work in treating patients with IDH wildtype historically lower grade gliomas or non-histological molecular glioblastomas. Radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. Giving chemotherapy with radiation therapy may kill more tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. The goal of this clinical research study is to compare receiving new radiation therapy doses and volumes to the prior standard treatment for patients with historically grade II or grade III IDH wild-type gliomas, which may now be referred to as IDH wildtype molecular glioblastomas at some institutions. Receiving temozolomide in combination with radiation therapy may also help to control the disease.

NCT ID: NCT03353896 Withdrawn - Oligodendroglioma Clinical Trials

NovoTTF-200A Device in Treating Patients With Newly Diagnosed High Risk Oligodendroglioma

Start date: December 15, 2017
Phase: N/A
Study type: Interventional

This pilot clinical trial studies the side effects of NovoTTF-200A device in treating patients with newly diagnosed high risk oligodendroglioma. NovoTTF-200A device is a portable battery operated device which produces tumor treating (TT)Fields in the body by means of surface electrodes placed on the skin. TTFields are very low intensity, intermediate frequency electric fields that may slow the growth of tumor cells in patients with high risk oligodendroglioma.

NCT ID: NCT03180502 Active, not recruiting - Glioma Clinical Trials

Proton Beam or Intensity-Modulated Radiation Therapy in Preserving Brain Function in Patients With IDH Mutant Grade II or III Glioma

Start date: August 2, 2017
Phase: Phase 2
Study type: Interventional

This randomized phase II clinical trial studies the side effects and how well proton beam or intensity-modulated radiation therapy works in preserving brain function in patients with IDH mutant grade II or III glioma. Proton beam radiation therapy uses tiny charged particles to deliver radiation directly to the tumor and may cause less damage to normal tissue. Intensity-modulated or photon beam radiation therapy uses high-energy x-ray beams shaped to treat the tumor and may also cause less damage to normal tissue. Patients will be more likely to be randomized to proton beam radiation therapy. It is not yet known if proton beam radiation therapy is more effective than photon-based beam intensity-modulated radiation therapy in treating patients with glioma.

NCT ID: NCT02903784 Completed - Astrocytoma Clinical Trials

Neural Basis of Language Processing

BNL
Start date: September 2012
Phase: N/A
Study type: Interventional

According to the O.M.S. Classification, grade 2 glioma is a pre-cancerous lesion, slowly progressive, infiltrating the central nervous system, mainly affecting young adults. This surgery should nevertheless be conducted in awake condition to achieve two conflicting goals: get maximum brain tissue infiltrated by the tumor while preserving the integrity of functional structures. So awake after opening the skull, the patient undergoes a series of preoperative tests, administered by a speech therapist present in the operating room. This procedure allows the neurosurgeon to establish an individual functional brain mapping in real time, through the observation by the SLP of the patient's answers to direct electrical stimulation applied to the cortical and sub-cortical. This support is based on the extraordinary plasticity demonstrated by the brain in the presence of a slowly progressive lesion. To ensure the patient the highest achievable load should increase our understanding of brain function, including the neural bases of language, glioma grade 2 is predominantly localized functional area of language.

NCT ID: NCT02530320 Completed - Oligodendroglioma Clinical Trials

Safety and Efficacy of PD0332991 (Palbociclib), a Cyclin-dependent Kinase 4 and 6 Inhibitor, in Patients With Oligodendroglioma or Recurrent Oligoastrocytoma Anaplastic With the Activity of the Protein RB Preserved

Start date: October 25, 2015
Phase: Phase 2
Study type: Interventional

This multicenter, open-label, phase II trial aims to assess the safety and efficacy of palbociclib in adult patients with Oligodendroglioma or recurrent oligoastrocytoma anaplastic with the activity of the protein RB preserved.

NCT ID: NCT02209428 Active, not recruiting - Astrocytoma Clinical Trials

A Prospective Cohort to Study the Effect of Temozolomide on IDH Mutational Low Grade Gliomas

Start date: June 2014
Phase: Phase 2
Study type: Interventional

Low grade gliomas (LGGs) are the most common primary central nervous system malignancies. Brain surgeries with the most possible extent of resection are endeavored to achieve longer survivals in LGG patients. For patients with tumor located in eloquent areas so that gross total resection is not applicable, National Comprehensive Cancer Network (NCCN) 2013 guidelines assigned both radiotherapy or chemotherapy as adjuvant treatments of low grade glioma following surgeries. Retrospective studies have suggested that temozolomide (an oral chemotherapeutics) chemotherapy have good effects on the control of tumor progression or recurrence in LGG patients after surgeries, especially in those with isocitrate dehydrogenase (IDH) gene mutations. Therefore, our prospective cohort study is to provide a higher level(IIb) of evidence for the correlation between IDH mutation and the responsiveness to up-front adjuvant metronomic temozolomide chemotherapy in young patients with LGG located in eloquent brain areas. And hopefully justify future RCTs with comparison between effects of adjuvant radiotherapy and chemotherapy in these patients.

NCT ID: NCT01849952 Recruiting - Glioblastoma Clinical Trials

Evaluating the Expression Levels of MicroRNA-10b in Patients With Gliomas

Start date: February 28, 2020
Phase:
Study type: Observational

MicroRNAs (miRNA) are molecular biomarkers that post-transcriptionally control target genes. Deregulated miRNA expression has been observed in diverse cancers. In high grade gliomas, known as glioblastomas, the investigators have identified an oncogenic miRNA, miRNA-10b (mir-10b) that is expressed at higher levels in glioblastomas than in normal brain tissue. This study tests the hypothesis that in primary glioma samples mir-10b expression patterns will serve as a prognostic and diagnostic marker. This study will also characterize the phenotypic and genotypic diversity of glioma subclasses. Furthermore, considering the critical function of anti-mir-10b in blocking established glioblastoma growth, the investigators will test in vitro the sensitivity of individual primary tumors to anti-mir-10b treatment. Tumor, blood and cerebrospinal fluid samples will be obtained from patients diagnosed with gliomas over a period of two years. These samples will be examined for mir-10b expression levels. Patient survival, as well as tumor grade and genotypic variations will be correlated to mir-10b expression levels.

NCT ID: NCT01281982 Terminated - Clinical trials for Glioblastoma Multiforme

(11C)dLop as a Marker of P-Glycoprotein Function in Patients With Gliomas

Start date: January 13, 2011
Phase:
Study type: Observational

Background: - The blood-brain barrier helps to protect the central nervous system (brain and spinal cord) from harmful toxins, but also prevents potentially useful chemotherapy from reaching brain tumors. The barrier is formed by tight connections between blood vessel cells and molecules found on the surface of brain blood vessels such as Permeability-glycoprotein (Pgp). Pgp may influence whether patients with brain tumors known as gliomas respond to chemotherapy and what side effects they may experience. The compound (11C)N-desmethyl-loperamide ((11C)dLop) reacts to Pgp molecules, and therefore may be used with positron emission tomography (PET) imaging to study the blood brain barrier. Objectives: - To study the ability of PET imaging with (11C)dLop to evaluate the blood brain barrier in brain tumor patients. Eligibility: - Individuals at least 18 years of age who have a brain tumor with characteristics that may be imaged with techniques such as magnetic resonance imaging (MRI) andPET. Design: - Participants will be screened with a full physical examination and medical history, blood and urine tests, and tumor imaging studies (fluorodeoxyglucose PET and MRI scans with contrast agent). - The (11C)dLop scan will take 1 hour to perform. Participants will be asked to return for blood and urine tests approximately 24 hours after the PET scan. - Participants will have followup visits at least every 4 months by repeating a complete history and physical exam and brain MRI. Participants may have repeat scans with (11C)dLop at various points in the course of cancer treatment, but will not have these scans more than twice in a 12-month period. - Participants will be followed for as long as possible during treatment to see if imaging with (11C)dLop correlates with response to the treatments.

NCT ID: NCT01089244 Active, not recruiting - Astrocytoma Clinical Trials

FET-PET for Diagnosis and Monitoring in Patients With Low Grade Glioma

Start date: June 2008
Phase: N/A
Study type: Observational

The aim of the study is to compare the two imaging modalities perfusion weighted MR-imaging and FET-PET in their ability to provide an accurate histological evaluation of low grade glioma and to reveal focal abnormalities within a homogeneously appearing tumor. Additionally, therapeutic effects should be assessed during a time period of two years.

NCT ID: NCT00897377 Terminated - Oligoastrocytoma Clinical Trials

Treatment Strategy for Low-grade Gliomas

Start date: December 2007
Phase: Phase 3
Study type: Interventional

Although the prognosis of patients with low-grade glioma (LGG) is generally good, recurrence seems unavoidable in some patients because of the infiltrative growth of the tumors. How to treat LGGs is still under controversy. The role of radiation therapy and chemotherapy in the treatment of LGG need to be further investigated. The purpose of this study is the following: 1. to investigate the role of early radiation therapy in MRI-determined total resected LGGs; 2. to compare the efficacy of early radiation therapy and that of initial chemotherapy in the LGGs without total resection.