View clinical trials related to Offloading.
Filter by:Diabetic foot ulceration (DFU) is a common and largely preventable complication of diabetes. While most of these ulcers can be treated successfully, some will persist and become infected. Ultimately, nearly one fifth of patients with infected lower-extremity diabetic ulcers will require amputation of the affected limb, resulting in staggering costs for both the patient and the healthcare system. Prevention by identifying people at higher risk is key for better clinical management of such patients. It is not uncommon for patients suffering from diabetes to have concomitant lower extremity edema or venous insufficiency and they subsequently may benefit from graduated compression. However, because of the common association of peripheral arterial disease (PAD) in patients with diabetes, most clinicians are reluctant to apply compressive dressings in fear of exacerbating the symptoms of PAD and possibility of gangrene. A novel low voltage, battery powered medical device, PulseFlow DF® (The Diabetic Boot Company, Ltd. UK) has endeavored to assist in the treatment of Diabetic Foot Ulcers. The device provides hybrid functionality i.e. mobile air bladder pump at plantar arch and offloading boot. The air bladder inflates to 160 mmHg for approx. 1 second then deflates back to atmospheric pressure, allowing the plantar vessels sufficient time to refill. The offloading boot design holds the foot and lower leg in a position that reduces shear and friction forces and provides a reduction in plantar pressure. The PulseFlow DF is designed to record how many hours of blood pumping it has delivered. This data will be downloaded at each clinic visit. The boot cannot pump blood around the participant's foot unless fitted correctly and the battery is charged up overnight. The purpose of this study is to conduct an interventional study study with N=15 diabetic subjects with active foot ulcers to assess whether PulseFlow foot compression device can help improve lower extremity perfusion, whilst improving balance and spatio-temporal parameters of gait. The key goals of the proposed project are to test whether a specially designed compression device can improve lower extremity perfusion, whilst also simultaneously improving the balance and walking performance. Investigators envision the use of this specially designed offloading device with compression capability will help reduce the incidence of diabetic foot ulcers in high-risk diabetic patients. In addition, investigators assumed the proposed device might enhance daily physical activity as well as walking performance. Investigators will conduct a prospective clinical study to validate these hypotheses. Potential changes in walking and spontaneous daily physical activities will be assessed using validated technologies that include walking analyzer system, balance assessment using body worn sensors, and computerized pressure insoles.