Clinical Trials Logo

Clinical Trial Summary

Normal-pressure hydrocephalus is associated with increases in the intracranial pressure during the night sleep. Sleep apnea also increases the intracranial pressure during the apneic spells. When patients are operated the distal part of the shunt is inserted inside the abdominal cavity, which pressure also increases during the sleep apnea episodes. this is particularly important considering that the recumbent position used to sleep further increases the intraabdominal pressure and that impairs the CSF drainage through the shunt system. The purpose of this study is to analyze the intracranial and intraabdominal pressures during the sleep, particularly during the sleep apnea episodes to see which shunt should be used, to which cavity should be drained (peritoneum or heart) and if correcting the sleep apnea has some positive result on the hydrocephalus symptoms.


Clinical Trial Description

Chronic hydrocephalus in adults, also known as normal pressure hydrocephalus or normal pressure hydrocephalus, occurs with the classic Hakim-Adams triad, gait ataxia, or "magnetic gait", urinary incontinence and dementia. Most of the cases have an idiopathic origin and are the only potentially reversible cause of dementia with surgical treatment (by shunting the cerebrospinal fluid or CSF from the lateral ventricles or the thecal sac to the peritoneal cavity or the right atrium), so it is especially important to diagnose it and treat it properly. Unfortunately, and despite all the diagnostic arsenal, the results of treatment using cerebrospinal fluid shunts (lumbo-peritoneal or ventricle-peritoneal), even in the best series, show 20-25% of poor results. These poor results have been attributed to many factors, including associated cerebral vascular pathology problems, co-existing dementia symptoms not always well diagnosed, Parkinson's disease, and, lastly, alterations in ventilatory rhythm. during the night, specifically obstructive sleep apnea or OSA. In reality, the name of normotensive hydrocephalus or hydrocephalus at normal pressure is inaccurate because the intracranial pressure does rise and very markedly during sleep, particularly during the REM phase of sleep. What is no longer so well known is because of such significant increases in intracranial pressure occur. One possible explanation would be that obstructive sleep apnea causes increased intracranial pressure. But it remains to be clarified whether all patients with adult chronic hydrocephalus have sleep apnea, the mechanism of action, and to what extent the treatment of hydrocephalus acts on sleep apnea and vice versa. Another aspect to consider is that the cerebrospinal fluid shunts work by the pressure gradient between the intracranial cavity and the cavity into which the cephalo-spinal fluid is drained66, usually the peritoneal fluid. During sleep apnea, there should be an increase in intra-abdominal pressure, which would result in the ventricle-peritoneal and lumbo-peritoneal shunts working suboptimally precisely at the time of day when they are most needed, that is when intracranial pressure increases. But this correlation has never been investigated or at least there are no publications about it. Therefore, it is necessary to know the relationship between intracranial pressure, sleep apnea, and intra-abdominal pressure at night. With these data, it will be possible to better understand the dynamics of the circulation of the cerebrospinal fluid during the night (when it is more pathological in chronic hydrocephalus in adults), what type of bypass valve is the most indicated (whether or not it must have an anti-system siphon if it must be a gravitational or flow valve) and in which patients the implantation of a ventricle-atrial shunt may be an option to consider. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04471740
Study type Interventional
Source University of Valencia
Contact Vicente Vanaclocha
Phone 34669790013
Email vvanaclo@hotmail.com
Status Recruiting
Phase N/A
Start date July 2, 2020
Completion date December 31, 2023

See also
  Status Clinical Trial Phase
Completed NCT05582070 - Effect on Sleep of Surgical Treatment of Severe Nasal Obstruction N/A
Recruiting NCT03919955 - A Novel Pharmacological Therapy for Obstructive Sleep Apnea Phase 2
Completed NCT03927547 - Sleep Disordered Breathing and Cardiopulmonary Disease in Peruvian Highlanders N/A
Recruiting NCT04007380 - Psychosocial, Cognitive, and Behavioral Consequences of Sleep-disordered Breathing After SCI N/A
Completed NCT02188498 - Electrocardiography Data Analysis in Sleep Disorders
Completed NCT01503164 - Effects of Continuous Positive Airway Pressure (CPAP) on Glucose Metabolism N/A
Recruiting NCT00747890 - Surgical Treatment of Mild Obstructive Sleep Apnea N/A
Active, not recruiting NCT00738179 - Continuous Positive Airway Pressure Treatment of Obstructive Sleep Apnea to Prevent Cardiovascular Disease Phase 3
Completed NCT00841906 - Alice PDx User/Validation Extended Trial N/A
Completed NCT00202501 - Usefulness of Nasal Continuous Positive Airway Pressure (CPAP) Treatment in Patients With a First Ever Stroke and Sleep Apnea Syndrome N/A
Completed NCT00047463 - Effects of Treating Obstructive Sleep Apnea in Epilepsy Phase 2
Not yet recruiting NCT06029881 - Portable System for Non-intrusive Monitoring of Sleep
Recruiting NCT06093347 - Central Apnoea Monitor Study
Terminated NCT05445869 - Severe OSA Study (SOS) N/A
Withdrawn NCT04096261 - The Importance of Sleep Quality and the Blood-brain Barrier in Cognitive Disorders and Alzheimer's Disease
Recruiting NCT04575740 - Phenotyping Mechanistic Pathways for Adverse Health Outcomes in Sleep Apnea N/A
Completed NCT04676191 - Validation of a Contactless Vital Signs Measurement Sensor N/A
Recruiting NCT06015620 - Comorbidities Resolution After MGB Surgery and Change in Body Composition
Completed NCT06051097 - Metabolic Syndrome and Obstructive Sleep Apnea
Completed NCT05687097 - Untreated Sleep Apnea as an Aggravating Factor for Other Secondary Medical Conditions After Spinal Cord Injury