Clinical Trials Logo

Clinical Trial Summary

Pulmonary nodules diagnosis using breath test of volatile organic compound (VOC) is in its infancy. The accuracy of VOC analysis in diagnosing malignant pulmonary nodules varies cross the published studies. The diagnosis accuracy of VOC alone is generally poor. We speculate that the accuracy of diagnosing malignant pulmonary nodules will be improved by combining breath test with chest computed tomography (CT). This study aims to establish a predictive model of malignant pulmonary nodule using bio-markers from exhaled breath and image-markers from chest CT with retrospective data from multi centers. The sensitivity, specificity and accuracy of the model will be validated prospectively.


Clinical Trial Description

Endogenous volatile organic compounds (VOCs) can be derived from many different metabolic pathways. VOCs can be transported to the alveoli through the blood circulation and expelled by exhalation. Changes in VOCs production, clearance, and alterations in lung air-blood exchange functions can lead to aberrant VOCs profiles in the exhaled breath. Testing exhaled breath has the advantages of being completely non-invasive and easy to collect, and has been considered as a perfect approach for disease diagnoses and therapeutic monitoring. Many clinical studies have found that VOCs in exhaled breath are closely related to disease status. Specific VOCs alterations have been identified in many tumors, especially lung cancer. Pulmonary nodules diagnosis using breath test of volatile organic compound (VOC) is in its infancy. The accuracy of VOC analysis in diagnosing malignant pulmonary nodules varies cross the published studies. The diagnosis accuracy of VOC alone is generally poor. We speculate that the accuracy of diagnosing malignant pulmonary nodules will be improved by combining VOC analysis with chest computed tomography. In this study, we use a highly sensitive mass spectrometry to detect exhaled VOCs of patients with pulmonary nodules. The chest CT will be used for detecting the imaging characteristics of pulmonary nodules. The pathological diagnosis of pulmonary nodules after surgical resections is selected as golden standard. This study aims to establish a predictive model of malignant pulmonary nodule using bio-markers from breath test and image-markers from chest CT with retrospective data from multi centers. The sensitivity, specificity and accuracy of the model will be varied prospectively. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04948047
Study type Observational
Source Peking University People's Hospital
Contact Mantang Qiu, PhD
Phone 13915973485
Email qiumantang@163.com
Status Recruiting
Phase
Start date July 10, 2021
Completion date December 31, 2022

See also
  Status Clinical Trial Phase
Terminated NCT03087448 - Ceritinib + Trametinib in Patients With Advanced ALK-Positive Non-Small Cell Lung Cancer (NSCLC) Phase 1
Recruiting NCT05042375 - A Trial of Camrelizumab Combined With Famitinib Malate in Treatment Naïve Subjects With PD-L1-Positive Recurrent or Metastatic Non-Small Cell Lung Cancer Phase 3
Completed NCT02526017 - Study of Cabiralizumab in Combination With Nivolumab in Patients With Selected Advanced Cancers Phase 1
Enrolling by invitation NCT00068003 - Harvesting Cells for Experimental Cancer Treatments
Terminated NCT05414123 - A Therapy Treatment Response Trial in Patients With Leptomeningeal Metastases ((LM) Using CNSide
Recruiting NCT05059444 - ORACLE: Observation of ResiduAl Cancer With Liquid Biopsy Evaluation
Recruiting NCT05919537 - Study of an Anti-HER3 Antibody, HMBD-001, With or Without Chemotherapy in Patients With Solid Tumors Harboring an NRG1 Fusion or HER3 Mutation Phase 1
Recruiting NCT05009836 - Clinical Study on Savolitinib + Osimertinib in Treatment of EGFRm+/MET+ Locally Advanced or Metastatic NSCLC Phase 3
Recruiting NCT03412877 - Administration of Autologous T-Cells Genetically Engineered to Express T-Cell Receptors Reactive Against Neoantigens in People With Metastatic Cancer Phase 2
Active, not recruiting NCT03170960 - Study of Cabozantinib in Combination With Atezolizumab to Subjects With Locally Advanced or Metastatic Solid Tumors Phase 1/Phase 2
Completed NCT03219970 - Efficacy and Safety of Osimertinib for HK Chinese With Metastatic T790M Mutated NSCLC-real World Setting.
Recruiting NCT05949619 - A Study of BL-M02D1 in Patients With Locally Advanced or Metastatic Non-small Cell Lung Cancer or Other Solid Tumors Phase 1/Phase 2
Recruiting NCT04054531 - Study of KN046 With Chemotherapy in First Line Advanced NSCLC Phase 2
Withdrawn NCT03519958 - Epidermal Growth Factor Receptor (EGFR) T790M Mutation Testing Practices in Hong Kong
Completed NCT03384511 - The Use of 18F-ALF-NOTA-PRGD2 PET/CT Scan to Predict the Efficacy and Adverse Events of Apatinib in Malignancies. Phase 4
Terminated NCT02580708 - Phase 1/2 Study of the Safety and Efficacy of Rociletinib in Combination With Trametinib in Patients With mEGFR-positive Advanced or Metastatic Non-small Cell Lung Cancer Phase 1/Phase 2
Completed NCT01871805 - A Study of Alectinib (CH5424802/RO5424802) in Participants With Anaplastic Lymphoma Kinase (ALK)-Rearranged Non-Small Cell Lung Cancer (NSCLC) Phase 1/Phase 2
Terminated NCT04042480 - A Study of SGN-CD228A in Advanced Solid Tumors Phase 1
Recruiting NCT05919641 - LIVELUNG - Impact of CGA in Patients Diagnosed With Localized NSCLC Treated With SBRT
Completed NCT03656705 - CCCR-NK92 Cells Immunotherapy for Non-small Cell Lung Carcinoma Phase 1