Clinical Trials Logo

Clinical Trial Summary

The purpose of this study is to evaluate the diagnostic value of 18F-FDG PET/CT dynamic imaging in metastasis of non-small cell lung cancer (NSCLC). The investigators will collect dynamic 18F-FDG PET/CT scan and correlate the imaging findings with genomics and histopathological features of biopsy of primary or / and metastatic lesions in patients with newly diagnosed non-small cell lung cancer (NSCLC). At the same time, the investigators will evaluate the diagnostic value of 18F-FDG PET/CT dynamic imaging in differentiating multiple primary lung cancer from intrapulmonary metastases.


Clinical Trial Description

Lung cancer is a malignant tumor with the highest morbidity and mortality in China and all over the world, in which non-small cell lung cancer (NSCLC) accounts for more than 85% of all categories [1-2]. Although the precision medicine has greatly improved the survival time of patients with NSCLC, most patients still have recurrence and metastasis after a period of time [3]. The nature of tumorigenesis, development and metastasis is a series of biochemical processes, such as abnormal gene expression and metabolism, dysfunction and structural change. Early prediction of tumor metastasis and accurate and timely clinical intervention will not only help clinicians to formulate treatment plans, but also reduce unnecessary side effects and medical expenses with ineffective treatment. 18F-FDG-PET scans can reflect metabolic changes at cellular and molecular level, and the metabolic information are transmitted earlier than anatomical changes. Detection of 18F-FDG uptake, analysis of tumor metabolism, tissue blood flow perfusion, receptor, and so on, can provide a theoretical basis for monitoring the therapeutic efficacy of lung cancer by PET [4]. As a new imaging technique, 18F-FDG PET/CT plays a more and more important role in the diagnosis of tumor. 18F-FDG PET/CT reflects the process of glucose metabolism in tumor tissue. The diagnosis of benign and malignant tumors is based on the difference of glucose metabolism activity between tumor cells and normal tissue cells. 18F-FDG is the isomer of glucose, which participates in the process of glucose metabolism. Because it cannot produce hexose diphosphate because of its deoxidation, it cannot participate in the next metabolism, and it is retained in cells. Due to the high expression of glucose transport mRNA,the level of Glut-1 and Glut-3 increased, the expression of hexokinase increased, and the level of glucose-6-phosphatase decreased, which resulted in an increase of 18F-FDG uptake in tumor cells [5]. Molecular imaging using 18F-FDG PET / CT can provide metabolic information, which can make benign and malignant tissues differentiate better, and reveal the functional abnormalities before structural damage [6]. However, the current PET/CT scans reported in the relevant literature are based on conventional static scans, i.e. the image data is based on a static take-up image of the tracer in tissue obtained at a fixed time point after the injection of 18F-FDG. To improve, the investigators propose to use dynamic data scanning, which captures the dynamic data of whole body tissues collected from the moment of injecting 18F-FDG to an hour. Dynamic scans can provide information on the dynamic changes in tracer metabolism and distribution in tissues over time, so they provide a richer metabolic and distributional pattern of tumor foci and metastases than static scans. Therefore, the aim of this study is to make up for this gap by performing a dynamic scan of 18F-FDG PET/CT on newly diagnosed patients with non-small cell lung cancer. The lesions and/or metastases are performed for biopsy. Pathological and genomic studies are performed. The differences between tumor images and tissues are compared at the same time. 18F-FDG PET/CT dynamic imaging is explored in non-small cell lung cancer metastases for the diagnostic value.At the same time, the ability to differentiate multiple primary lung cancer from intrapulmonary metastases of 18F-FDG PET/CT dynamic imaging will be dissussed . ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03679936
Study type Observational
Source Fifth Affiliated Hospital, Sun Yat-Sen University
Contact Jin
Phone 0756-2526136
Email jinhj3@mail.sysu.edu.cn
Status Recruiting
Phase
Start date January 3, 2018
Completion date December 31, 2024

See also
  Status Clinical Trial Phase
Terminated NCT03087448 - Ceritinib + Trametinib in Patients With Advanced ALK-Positive Non-Small Cell Lung Cancer (NSCLC) Phase 1
Recruiting NCT05042375 - A Trial of Camrelizumab Combined With Famitinib Malate in Treatment Naïve Subjects With PD-L1-Positive Recurrent or Metastatic Non-Small Cell Lung Cancer Phase 3
Completed NCT02526017 - Study of Cabiralizumab in Combination With Nivolumab in Patients With Selected Advanced Cancers Phase 1
Enrolling by invitation NCT00068003 - Harvesting Cells for Experimental Cancer Treatments
Terminated NCT05414123 - A Therapy Treatment Response Trial in Patients With Leptomeningeal Metastases ((LM) Using CNSide
Recruiting NCT05059444 - ORACLE: Observation of ResiduAl Cancer With Liquid Biopsy Evaluation
Recruiting NCT05919537 - Study of an Anti-HER3 Antibody, HMBD-001, With or Without Chemotherapy in Patients With Solid Tumors Harboring an NRG1 Fusion or HER3 Mutation Phase 1
Recruiting NCT05009836 - Clinical Study on Savolitinib + Osimertinib in Treatment of EGFRm+/MET+ Locally Advanced or Metastatic NSCLC Phase 3
Recruiting NCT03412877 - Administration of Autologous T-Cells Genetically Engineered to Express T-Cell Receptors Reactive Against Neoantigens in People With Metastatic Cancer Phase 2
Active, not recruiting NCT03170960 - Study of Cabozantinib in Combination With Atezolizumab to Subjects With Locally Advanced or Metastatic Solid Tumors Phase 1/Phase 2
Completed NCT03219970 - Efficacy and Safety of Osimertinib for HK Chinese With Metastatic T790M Mutated NSCLC-real World Setting.
Recruiting NCT05949619 - A Study of BL-M02D1 in Patients With Locally Advanced or Metastatic Non-small Cell Lung Cancer or Other Solid Tumors Phase 1/Phase 2
Recruiting NCT04054531 - Study of KN046 With Chemotherapy in First Line Advanced NSCLC Phase 2
Withdrawn NCT03519958 - Epidermal Growth Factor Receptor (EGFR) T790M Mutation Testing Practices in Hong Kong
Completed NCT03384511 - The Use of 18F-ALF-NOTA-PRGD2 PET/CT Scan to Predict the Efficacy and Adverse Events of Apatinib in Malignancies. Phase 4
Terminated NCT02580708 - Phase 1/2 Study of the Safety and Efficacy of Rociletinib in Combination With Trametinib in Patients With mEGFR-positive Advanced or Metastatic Non-small Cell Lung Cancer Phase 1/Phase 2
Completed NCT01871805 - A Study of Alectinib (CH5424802/RO5424802) in Participants With Anaplastic Lymphoma Kinase (ALK)-Rearranged Non-Small Cell Lung Cancer (NSCLC) Phase 1/Phase 2
Terminated NCT04042480 - A Study of SGN-CD228A in Advanced Solid Tumors Phase 1
Recruiting NCT05919641 - LIVELUNG - Impact of CGA in Patients Diagnosed With Localized NSCLC Treated With SBRT
Completed NCT03656705 - CCCR-NK92 Cells Immunotherapy for Non-small Cell Lung Carcinoma Phase 1