Clinical Trials Logo

Non-Compaction Cardiomyopathy clinical trials

View clinical trials related to Non-Compaction Cardiomyopathy.

Filter by:
  • Recruiting  
  • Page 1

NCT ID: NCT04424030 Recruiting - Clinical trials for Non-Compaction Cardiomyopathy

International Consortium for Multimodality Phenotyping in Adults With Non-compaction

NONCOMPACT
Start date: January 1, 2021
Phase:
Study type: Observational

Non-compaction cardiomyopathy (NCCM) is a heterogeneous, poorly understood disorder characterized by a prominent inner layer of loose myocardial tissue, and associated with heart failure, stroke, severe rhythm irregularities and death. For a growing population diagnosed with NCCM there is a need for better risk stratification to appropriately allocate (or safely withhold) these impactful preventive measures. The goal of this international consortium is to improve care of patients with non-compaction cardiomyopathy. We hypothesize that comprehensive analysis of clinical, genetic, structural and functional information will improve risk stratification. In addition, we hypothesize that detailed structural analysis will allow for differentiation of pathological and benign patterns of non-compaction. In a large cohort of adult patients with suspected NCCM we will perform in-depth phenotyping, including clinical information, pedigree data, genetics, echocardiography and MRI, and follow patients for up to 3 years. We will apply machine-learning based analytics to develop predictive models and compare their performance to currently used models and treatment criteria. Secondly, in a subset of patients we will perform high-resolution cardiac CT for detailed structural characterization of the myocardial wall. We will investigate associations between myocardial structure and regional contractile function, as assessed by echo and MRI. The aim of this proposal is to identify a structural signature associated with pathological non-compaction and improve developed risk prediction models. Discovery of pathological structural signatures through innovative imaging techniques, in relation to myocardial contractility, will advance our understanding of NCCM.