Clinical Trials Logo

Clinical Trial Summary

Dystonias represent hyperkinetic movement disorders characterized by protracted muscle contractions, such as to cause torsional movements and anomalous postures in different parts of the body. Although they occur more often in a focal form (blepharospasm, oromandibular dystonia, cervical dystonia, laryngeal dystonia, attitudinal cramps of the limbs) than segmental (involvement of several contiguous muscle groups, e.g. facial muscles and neck muscles), they are nevertheless capable of significantly influencing the quality of life, with consequent social and health costs. Although described as a predominantly motor disorder, the presence of non-motor symptoms in dystonias associated with alteration of the fronto-striatal circuits is increasingly recognized. Neuroimaging studies have highlighted that the striatum and, more specifically, striatal dopamine, is involved in high cognitive processes such as attention, reward-based learning and decision making. Clinical conditions associated with cortico-striatal circuit dysfunction and abnormal meso-striatal or meso-cortical dopamine transmission also appear to influence temporal estimation, delay discounting, showing an impulsive preference for immediate rewards over delayed gratification. Based on these premises, the present project aims to evaluate the cognitive and affective aspects of dystonias, in line with neuroimaging research documenting structural and functional dysfunctions in the respective brain regions.


Clinical Trial Description

Dystonias represent hyperkinetic movement disorders characterized by protracted muscle contractions, such as to cause torsional movements and anomalous postures in different parts of the body. Although they occur more often in a focal form (blepharospasm, oromandibular dystonia, cervical dystonia, laryngeal dystonia, attitudinal cramps of the limbs) than segmental (involvement of several contiguous muscle groups, e.g. facial muscles and neck muscles), they are nevertheless capable of significantly influencing the quality of life, with consequent social and health costs. Although described as a predominantly motor disorder, the presence of non-motor symptoms in dystonias associated with alteration of the fronto-striatal circuits is increasingly recognized. Neuroimaging studies have highlighted that the striatum and, more specifically, striatal dopamine, is involved in high cognitive processes such as attention, reward-based learning and decision making. Clinical conditions associated with cortico-striatal circuit dysfunction and abnormal meso-striatal or meso-cortical dopamine transmission also appear to influence temporal estimation, delay discounting, showing an impulsive preference for immediate rewards over delayed gratification. Based on these premises, the present project aims to evaluate the cognitive and affective aspects of dystonias, in line with neuroimaging research documenting structural and functional dysfunctions in the respective brain regions. The study aims to investigate the neurocognitive profile in patients with dystonia. In particular, investigators will evaluate the correlation between the alterations of the subcortical areas and the cognitive and affective functions involved in the processes of evaluating risk, reward and impulsivity. Primary Objectives: Study of cognitive and affective functions in dystonic subjects, with particular reference to the mechanisms of reward learning, inhibitory control and impulsivity. Secondary objectives: Connectivity analysis of neuronal substrates related to higher order cognitive alterations ;


Study Design


Related Conditions & MeSH terms


NCT number NCT06264063
Study type Interventional
Source IRCCS Centro Neurolesi "Bonino-Pulejo"
Contact
Status Recruiting
Phase N/A
Start date January 10, 2024
Completion date October 10, 2025

See also
  Status Clinical Trial Phase
Completed NCT01433757 - Ampicillin for DYT-1 Dystonia Motor Symptoms Phase 1
Recruiting NCT00971854 - Alteration of Deep Brain Stimulation Parameters for Dystonia N/A
Enrolling by invitation NCT00355927 - Sedation During Microelectrode Recordings Before Deep Brain Stimulation for Movement Disorders. N/A
Completed NCT00169338 - Pallidal Stimulation in Patients With Post-anoxic and Idiopathic Dystonia Phase 2
Completed NCT00004421 - Deep Brain Stimulation in Treating Patients With Dystonia Phase 2/Phase 3
Terminated NCT03270189 - Effect of the Visual Information Change in Functional Dystonia N/A
Recruiting NCT02583074 - Clinical Trial of STN-DBS for Primary Cranial-Cervical Dystonia N/A
Recruiting NCT06117020 - Single and Multiple Ascending Dose Study of MTR-601 in Healthy Individuals Phase 1
Completed NCT01432899 - Studying Childhood-Onset Hemidystonia
Completed NCT04948684 - Efficacy of Botulinum Toxin for the Treatment of Dystonia Associated With Parkinson's Disease and Atypical Parkinsonism
Completed NCT05106816 - The Effects of Vibrotactile Stimulation in Patients With Movement Disorders N/A
Recruiting NCT05027997 - Exploratory Study of Dipraglurant (ADX48621) for the Treatment of Patients With Blepharospasm Phase 2
Completed NCT00465790 - Research of Biomarkers in Parkinson Disease Phase 0
Active, not recruiting NCT00142259 - Efficacy and Safety of DBS of the GPi in Patients With Primary Generalized and Segmental Dystonia Phase 4
Recruiting NCT05663840 - Effects of Exercise on Dystonia Pathophysiology N/A
Not yet recruiting NCT06038097 - Efficacy and Safety of Radiofrequency Pallidotomy in the Management of Dystonia N/A
Recruiting NCT04286308 - Cortical-Basal Ganglia Speech Networks N/A
Active, not recruiting NCT03582891 - The Motor Network in Parkinson's Disease and Dystonia: Mechanisms of Therapy N/A
Completed NCT03318120 - Exercise Training in Dystonia N/A
Completed NCT04568681 - Deep Brain Stimulation Effects in Dystonia