Clinical Trials Logo

Neuromuscular Blocking Agents clinical trials

View clinical trials related to Neuromuscular Blocking Agents.

Filter by:
  • Completed  
  • Page 1

NCT ID: NCT04920682 Completed - Muscle Weakness Clinical Trials

Reversal of Moderate or Superficial Neuromuscular Blockade Induced by Cisatracurium

Start date: June 1, 2021
Phase: Phase 4
Study type: Interventional

The administration of acetylcholinesterase inhibiting agents (such as neostigmine) has been used to reverse the muscle paralysis induced by non-depolarizing neuromuscular blocking agents. It is not well known whether there is a difference between the time required for complete reversion of moderate neuromuscular blockade (NMB) after the administration of neostigmine in usual doses when compared to the reversion of superficial NMB with the use of a reduced dose of the same agent (excessive doses of neostigmine administered during superficial blocks may cause paradoxical muscle weakness). The aim of the present study will be to compare, by means of a prospective, randomized, controlled and double-blind clinical trial, the times necessary for the reversion of moderate block with neostigmine 60 mcg / kg or for superficial block to reach values of T4 / T1> 0.9 using neostigmine 30 mcg / kg.

NCT ID: NCT01152905 Completed - Clinical trials for Neuromuscular Blocking Agents

Effect of Nitrous Oxide on Cisatracurium Infusion Demands

Start date: April 2007
Phase: N/A
Study type: Observational

Background: Recent studies have questioned our previous understanding on the effect of nitrous oxide on muscle relaxants, since nitrous oxide has been shown to potentiate the action of bolus doses of mivacurium, rocuronium and vecuronium. This study was aimed to investigate the possible effect of nitrous oxide on the infusion requirements of cisatracurium. Methods: 70 ASA physical status I-III patients aged 18-75 years were enrolled in this randomized trial. The patients were undergoing elective surgery requiring general anesthesia with a duration of at least 90 minutes. Patients were randomized to receive propofol and remifentanil by target controlled infusion in combination with either a mixture of oxygen and nitrous oxide (Nitrous oxide/TIVA group) or oxygen in air (Air/TIVA group). A 0.1 mg/kg initial bolus of cisatracurium was administered before tracheal intubation, followed by a closed-loop computer controlled infusion of cisatracurium to produce and maintain a 90% neuromuscular block. Cumulative dose requirements of cisatracurium during the 90-min study period after bolus administration were measured and the asymptotic steady state rate of infusion to produce a constant 90% block was determined by applying nonlinear curve fitting to the data on the cumulative dose requirement during the study period. Results: Controller performance, i.e. the ability of the controller to maintain neuromuscular block constant at the setpoint and patient characteristics were similar in both groups. The administration of nitrous oxide did not affect cisatracurium infusion requirements. The mean steady-state rates of infusion were 0.072 +/- 0.018 and 0.066 +/- 0.017 mg * kg-1 * h-1 in Air/TIVA and Nitrous oxide/TIVA groups, respectively. Conclusions: Nitrous oxide does not affect the infusion requirements of cisatracurium.