View clinical trials related to Neuroendocrine Tumor.
Filter by:CABATEN is a multicohort phase II study of cabozantinib plus atezolizumab in advanced and progressive tumors from endocrine system. The primary objective is to assess the efficacy of cabozantinib plus atezolizumab combination by means of radiological objective response rate (ORR) evaluated following RECIST v1.1 criteria in advanced endocrine tumors. Endocrine tumors from different origins (thyroid, lung, pancreas and digestive tract, adrenal gland and paraganglia) are characterized by being remarkably vascular and expressing several growth factors including vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), insulin-like growth factor 1 (IGF-1), basic fibroblast growth factor (BFGF), and transforming growth factor (TGF)-α and -β. The (over) expression of some of these factors has been linked to poor prognosis. Cabozaninib, a VEGF inhibitor, in combination with atezolizumab, an inhibitor of PD-L1, may be active in endocrine tumors by overcoming the resistance to prior antiangiogenic drugs. The trial will include patients with advanced and refractory tumors of endocrine system and patients would be allocated to six different cohorts according to the following tumor types.
The purpose of this study is to evaluate the effect of different surgical resections (R0, R1, R2) on circulating NET transcripts (PCR score or NETest). A drop in circulating NET levels will be correlated with surgical excision. Secondly, variation of circulating NET transcripts will be correlated to NET recurrence to test whether this analysis may constitute an early predictive marker of disease relapse.
This pilot research trial studies molecular analysis in tissue samples from patients with advanced or metastatic neuroendocrine tumors. Studying samples of tissue from patients with neuroendocrine tumors in the lab may help doctors identify mutations to classify disease and plan the best treatment.
This randomized phase III trial studies octreotide acetate and recombinant interferon alfa-2b to see how well it works compared to octreotide acetate and bevacizumab in treating patients with high-risk neuroendocrine tumors that have spread to other places in the body (metastatic) or spread from where it started to nearby tissue or lymph nodes (locally advanced). Octreotide acetate and recombinant interferon alfa-2b may interfere with the growth of tumor cells and slow the growth of cancer. Monoclonal antibodies, such as bevacizumab, may interfere with the ability of tumor cells to grow and spread. It is not yet known whether giving octreotide acetate together with recombinant interferon alfa-2b is more effective than giving octreotide acetate together with bevacizumab in treating patients with neuroendocrine tumor.