Clinical Trials Logo

Neuroectodermal Tumors clinical trials

View clinical trials related to Neuroectodermal Tumors.

Filter by:

NCT ID: NCT01088763 Terminated - Clinical trials for Unspecified Childhood Solid Tumor, Protocol Specific

Gamma-Secretase Inhibitor RO4929097 in Treating Young Patients With Relapsed or Refractory Solid Tumors, CNS Tumors, Lymphoma, or T-Cell Leukemia

Start date: March 2010
Phase: Phase 1
Study type: Interventional

This phase I/II clinical trial is studying the side effects and best dose of gamma-secretase inhibitor RO4929097 and to see how well it works in treating young patients with relapsed or refractory solid tumors, CNS tumors, lymphoma, or T-cell leukemia. Gamma-secretase inhibitor RO4929097 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT01076530 Completed - Clinical trials for Recurrent Childhood Ependymoma

Vorinostat and Temozolomide in Treating Young Patients With Relapsed or Refractory Primary Brain Tumors or Spinal Cord Tumors

Start date: February 2010
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of vorinostat when given together with temozolomide in treating young patients with relapsed or refractory primary brain tumors or spinal cord tumors. Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may help temozolomide work better by making tumor cells more sensitive to the drug.

NCT ID: NCT00994500 Completed - Clinical trials for Unspecified Childhood Solid Tumor, Protocol Specific

Vorinostat and Bortezomib in Treating Young Patients With Refractory or Recurrent Solid Tumors, Including Central Nervous System Tumors and Lymphoma

Start date: August 2009
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of vorinostat when given together with bortezomib in treating young patients with refractory or recurrent solid tumors, including CNS tumors and lymphoma. Vorinostat and bortezomib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.

NCT ID: NCT00983398 Active, not recruiting - Medulloblastoma Clinical Trials

Melphalan, Carboplatin, Mannitol, and Sodium Thiosulfate in Treating Patients With Recurrent or Progressive CNS Embryonal or Germ Cell Tumors

Start date: July 9, 2009
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of melphalan when given together with carboplatin, mannitol, and sodium thiosulfate, and to see how well they work in treating patients with central nervous system (CNS) embryonal or germ cell tumors that is growing, spreading, or getting worse (progressive) or has come back (recurrent). Drugs used in chemotherapy, such as melphalan and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Osmotic blood-brain barrier disruption (BBBD) uses mannitol to open the blood vessels around the brain and allow cancer-killing substances to be carried directly to the brain. Sodium thiosulfate may help lessen or prevent hearing loss and toxicities in patients undergoing chemotherapy with carboplatin and BBBD. Giving melphalan together with carboplatin, mannitol, and sodium thiosulfate may be an effective treatment for recurrent or progressive CNS embryonal or germ cell tumors.

NCT ID: NCT00946335 Completed - Clinical trials for Recurrent Childhood Ependymoma

ABT-888 and Temozolomide in Treating Young Patients With Recurrent or Refractory CNS Tumors

Start date: July 2009
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of ABT-888 when given in combination with temozolomide in treating young patients with recurrent or refractory CNS tumors. ABT-888 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving ABT-888 together with temozolomide may kill more tumor cells.

NCT ID: NCT00936156 Completed - Clinical trials for Metastatic, Cerebral Primitive Neuroectodermal Tumors

Treatment of High-Risk Cerebral Primitive Neuroectodermal Tumors in Children Aged Over 5 Years

Start date: January 2009
Phase: Phase 2
Study type: Interventional

Primary objective : To increase the 3 year progression-free survival from 40% to 60%. Patients included : metastatic, cerebral primitive neuroectodermal tumors in children aged over 5 years.

NCT ID: NCT00923351 Completed - Sarcoma Clinical Trials

Therapy to Treat Ewing's Sarcoma, Rhabdomyosarcoma or Neuroblastoma

Start date: June 2, 2007
Phase: Phase 1/Phase 2
Study type: Interventional

Background: - Pediatric solid tumors (Ewing's sarcoma, rhabdomyosarcoma, and neuroblastoma) are often difficult to cure with standard treatment. - Immune therapy using an experimental vaccine made from proteins from the patient's tumor cells may boost the body's immune response against the tumor. - The effects of chemotherapy on the immune system can potentially make immunotherapy more effective if administered soon after completion of chemotherapy. The addition of recombinant human IL-7 (interleukin 7) (rhIL-7 (recombinant human interleukin 7)) may make the immunotherapy more effective. Objectives: -To determine whether immune therapy given after immune suppression can help the body fight the tumor and to determine the safety of the treatment. Eligibility: -Patients with solid tumors, i.e., Ewing's sarcoma, rhabdomyosarcoma or neuroblastoma whose disease has recurred after treatment or spread beyond the original site Design: - Patients undergo tumor biopsy (removal of a piece of tumor tissue) to collect tumor cells for making a vaccine from proteins in the patient's tumor and apheresis (removal of a quantity of white blood cells) to collect white cells for re-building the immune system after immune therapy. Apheresis is repeated three times during immunotherapy (weeks 8, 14 and 20). - After receiving standard chemotherapy for their tumor (and an additional course of fludarabine and cyclophosphamide to further suppress immunity if needed) patients receive immune therapy in Cohorts A and B. rhIL-7 is given 48 hours before the vaccine, as an injection under the skin in an extremity that will not be used for the vaccine in patients in Cohort B only. You will be watched closely for 6 hours after the rhIL-7 for any signs of reaction. rhIL-7 will be given before vaccine doses #1, #2, #3, and #4. The vaccine is given at study weeks 2, 4, 6, 8, 10 and 12. Each vaccine is given as a total of six separate rhIL-7 followed by injections: three intradermal (like a (tuberculosis) TB test) on one arm or leg and three subcutaneous (like those for insulin injections for diabetes). on the other arm or leg. An anesthetic cream may be used to minimize the discomfort of injections. - Patients' white cells are returned to them by infusion through a vein on the first day of immune therapy. - Imaging studies and immune studies are done at weeks 1, 8 and 20 to determine the response to treatment on the tumor and on the immune system.

NCT ID: NCT00899990 Completed - Clinical trials for Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor

Collecting and Storing Biological Samples From Patients With Ewing Sarcoma

Start date: February 4, 2008
Phase:
Study type: Observational

This research study is collecting and storing samples of tumor tissue, bone marrow, and blood from patients with Ewing sarcoma. Collecting and storing samples of tumor tissue, bone marrow, and blood from patients with cancer to test in the laboratory may help the study of cancer in the future.

NCT ID: NCT00898053 Recruiting - Clinical trials for Localized Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor

Study of Tumor Samples From Patients With Ewing Sarcoma

Start date: September 2008
Phase: N/A
Study type: Observational

This laboratory study is looking at tumor samples from patients with Ewing sarcoma. Studying samples of tumor tissue from patients with cancer in the laboratory may help doctors learn more about changes that occur in DNA and identify biomarkers related to cancer

NCT ID: NCT00831844 Completed - Clinical trials for Recurrent Neuroblastoma

Cixutumumab in Treating Patients With Relapsed or Refractory Solid Tumors

Start date: January 2009
Phase: Phase 2
Study type: Interventional

This phase II trial is studying the side effects and how well cixutumumab works in treating patients with relapsed or refractory solid tumors. Monoclonal antibodies, such as cixutumumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them.