Clinical Trials Logo

Neuroectodermal Tumors clinical trials

View clinical trials related to Neuroectodermal Tumors.

Filter by:

NCT ID: NCT02116777 Completed - Clinical trials for Recurrent Malignant Solid Neoplasm

Talazoparib and Temozolomide in Treating Younger Patients With Refractory or Recurrent Malignancies

Start date: May 16, 2014
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of talazoparib and temozolomide and to see how well they work in treating younger patients with tumors that have not responded to previous treatment (refractory) or have come back (recurrent). Talazoparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving talazoparib together with temozolomide may work better in treating younger patients with refractory or recurrent malignancies.

NCT ID: NCT02094625 Completed - Osteosarcoma Clinical Trials

NAC to Prevent Cisplatin-induced Hearing Loss

Start date: March 2016
Phase: Phase 1
Study type: Interventional

Cisplatin is a key chemotherapy agent for the treatment of multiple childhood cancers but causes permanent hearing loss. This study investigates the drug N-acetylcysteine (NAC) to determine the dose necessary to protect hearing and also how well tolerated NAC is when combined with chemotherapy.

NCT ID: NCT01977677 Completed - Adult Glioblastoma Clinical Trials

Plerixafor After Radiation Therapy and Temozolomide in Treating Patients With Newly Diagnosed High Grade Glioma

Start date: November 2014
Phase: Phase 1/Phase 2
Study type: Interventional

This pilot phase I/II trial studies the side effects and best dose of plerixafor after radiation therapy and temozolomide and to see how well it works in treating patients with newly diagnosed high grade glioma. Plerixafor may stop the growth of tumor cells by blocking blood flow to the tumor. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high energy x rays to kill tumor cells. Giving plerixafor after radiation therapy and temozolomide may be an effective treatment for high grade glioma.

NCT ID: NCT01975116 Completed - Glioblastoma Clinical Trials

p28 in Treating Younger Patients With Recurrent or Progressive Central Nervous System Tumors

Start date: August 2013
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of azurin-derived cell-penetrating peptide p28 (p28) in treating patients with recurrent or progressive central nervous system tumors. Drugs used in chemotherapy, such as azurin-derived cell-penetrating peptide p28, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing.

NCT ID: NCT01876303 Completed - Clinical trials for Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor (PNET)

Genetic Biomarkers in Saliva Samples From Patients With Ewing Sarcoma

Start date: December 2012
Phase: N/A
Study type: Observational

This clinical trial studies genetic biomarkers from saliva samples in patients with Ewing sarcoma. Studying samples of saliva from patients with cancer in the laboratory may help doctors learn more about changes that occur in deoxyribonucleic acid (DNA) and identify biomarkers related to cancer.

NCT ID: NCT01825902 Completed - Clinical trials for Ewing Sarcoma of Bone

18F-FLT Positron Emission Tomography and Diffusion-Weighted Magnetic Resonance Imaging in Planning Surgery and Radiation Therapy and Measuring Response in Patients With Newly Diagnosed Ewing Sarcoma

Start date: March 2013
Phase: Early Phase 1
Study type: Interventional

This pilot trial studies fluorine F 18 fluorothymidine (18F-FLT) positron emission tomography and diffusion-weighted magnetic resonance imaging in planing surgery and radiation therapy and measuring response in patients with newly diagnosed Ewing sarcoma. Comparing results of diagnostic procedures done before and after treatment may help doctors predict a patient's response and help plan the best treatment.

NCT ID: NCT01661400 Completed - Glioma Clinical Trials

Anti-Angiogenic Therapy Post Transplant (ASCR) for Pediatric Solid Tumors

ASCR
Start date: October 26, 2012
Phase: Phase 1
Study type: Interventional

The purpose of this research study is to determine whether taking either of two low dose drugs that would prevent new blood vessels from growing after stem cell transplant is feasible, and what the side effects of taking each of these drugs after autologous transplant might be. The reason the investigators are looking at these drugs is because one of the things that allows tumors to grow quickly is their ability to stimulate the growth of new blood vessels. By suppressing the growth of new blood vessels after stem cell transplant, the investigators hope to prevent the tumors from coming back or continuing to grow.

NCT ID: NCT01614795 Completed - Rhabdomyosarcoma Clinical Trials

Cixutumumab and Temsirolimus in Treating Younger Patients With Recurrent or Refractory Sarcoma

Start date: June 18, 2012
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well cixutumumab and temsirolimus work in treating patients with recurrent or refractory sarcoma. Monoclonal antibodies, such as cixutumumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving cixutumumab and temsirolimus together may kill more tumor cells.

NCT ID: NCT01586104 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

Intensity-Modulated Radiation Therapy in Treating Younger Patients With Lung Metastases

Start date: February 2011
Phase: N/A
Study type: Interventional

This pilot clinical trial studies intensity-modulated radiation therapy (IMRT) in treating younger patients with lung metastases. Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue.

NCT ID: NCT01505569 Completed - Soft Tissue Sarcoma Clinical Trials

Auto Transplant for High Risk or Relapsed Solid or CNS Tumors

Start date: October 20, 2011
Phase: N/A
Study type: Interventional

This is a standard of care treatment guideline for high risk or relapsed solid tumors or CNS tumors consisting of a busulfan, melphalan, thiotepa conditioning (for solid tumors) or carboplatin and thiotepa conditioning (for CNS tumors) followed by an autologous peripheral blood stem cell transplant. For solid tumors, if appropriate, disease specific radiation therapy at day +60. For CNS tumors, the conditioning regimen and autologous peripheral blood stem cell transplant will be given for 3 cycles.