View clinical trials related to Neuroblastoma.
Filter by:The purpose of this study is to evaluate safety of the triple COG schema with the monoclonal antibody Dinutuximab + cytokines (GM-CSF and IL2) and isotretinoin (13-cis-retinoic acid, or RA) in patients with high-risk neuroblastoma.
The purpose of this study is to test the feasibility (ability to be done) of experimental technologies to determine a tumor's molecular makeup. This technology includes a genomic report based on DNA exomes and RNA sequencing that will be used to discover new ways to understand cancers and potentially predict the best treatments for patients with cancer in the future.
Hu14.18K322A is a monoclonal antibody developed at St. Jude Children's Research Hospital (SJCRH) that is made to bind to cancer cells that have a molecule called GD2 on their surface. Sometimes the human body will make an antibody to the therapeutic antibody (like hu14.18K322A) that is being given for treatment. These are called human anti-human antibodies (HAHA). When testing for HAHA in a previous cohort of patients who received hu14.18K322A, it was found that some patients tested positive for high levels of an antibody before receiving hu14.18K322A or any other anti-GD2 antibody. In this study, investigators would like to know more about the nature of this pretreatment antibody, how often is it present, and if in the laboratory it increases the killing of tumor cells. OBJECTIVES: - To determine whether pretreatment anti-therapeutic antibodies (PATA) represent antibodies reactive against an epitope (allotypic determinant) found on the anti-GD2 antibody hu14.18K322A - To determine if PATA increases the anti-tumor efficacy of anti-GD2 antibodies in vitro
The purpose of this research study is to evaluate an investigational drug (DFMO) in combination with bortezomib, for relapsed and refractory neuroblastoma. DFMO is an investigational drug because it has not been approved by the U.S. Food and Drug Administration (FDA). This study will look at the safety and tolerability of DFMO in combination with bortezomib as well as the tumors response to this study drug.
This is a pilot clinical trial investigating the addition of haploidentical natural killer cell infusion to autologous stem cell transplantation. This intervention will be evaluated in children with high-risk solid tumors for whom autologous transplantation is indicated. Natural killer cells from a haploidentical family member will be given after high dose chemotherapy and positively selected autologous stem cells. In patients with neuroblastoma, the anti-GD2 antibody hu14.18K322A will also be given. The effect on normal hematopoietic cell recovery will be evaluated and survival of children treated with this approach will be determined. The investigators expect to enroll 36 participants. Haploidentical family members (donors) will also be recruited to provide natural killer cells.
Background GD2 is a well-characterized tumor antigen in neuroblastoma, which is also expressed on osteosarcomas and some other sarcomas. T cells expressing 1st generation anti-GD2 chimeric antigen receptors (CARs) were safe and mediated modest antitumor activity in some patients with refractory neuroblastoma. A 3rd generation anti-GD2-CAR (GD2-CAR.OX40.28.z.ICD9) has been produced and holds promise for increased activity compared to the 1st generation GD2-CAR already studied in clinical trials. As an added safety measure, the vector includes a suicide switch comprising a caspase dimerization domain (ICD9) that can be activated by a small molecule to induce death of the genetically engineered cells if they were induce untoward toxicity. Objectives Primary:Determine the feasibility of producing anti GD2-CAR cells meeting the established release criteria and to assess the safety of administering escalating doses of anti-GD2-CAR engineered T cells in children and young adults with GD2+ solid tumors, including neuroblastoma, following cyclophosphamide-based lymphodepletion. Secondary: 1. Determine if administration anti-GD2-CAR engineered T cells mediate antitumor effects in children and young adults with GD2+ solid tumors; 2. Measure persistence of adoptively transferred anti-GD2-CAR T cells and correlate this with antitumor effects; 3. Extend information regarding the prevalence and intensity of GD2 expression in non-neuroblastoma, non-osteosarcoma solid tumors in children and young adults; 4. If unacceptable toxicity occurs that is possibly, probably or likely related to anti-GD2-CAR T cells, assess the capacity for AP1903, a dimerizing agent, to mediate clearance of the genetically engineered cells and resolve toxicity; and 5. Assess toxicity of AP1903 if administered to mediate clearance of anti-GD2-CAR T cells. Eligibility Patients 1-35 years of age, at least 15 kg, with osteosarcoma or a GD2+ solid tumor (including neuroblastoma) that has recurred after or not responded to standard therapy and is deemed incurable by standard therapy. Design After apheresis to collect T cells for transduction, patients receive cyclophosphamide 1800mg/m(2)/d as a lymphodepleting regimen. A phase I cell dose escalation scheme will used at 4 dose levels (1 x 10(5) transduced T cells/kg; 1 x 10(6) transduced T cells/kg; 3 x 10(6) transduced T cells/kg; and 1 x 10(7) transduced T cells/kg), using a standard 3 plus 3 dose escalation design. An expanded group of a total of 12 patients will be treated at the highest dose, comprising at least 6 osteosarcoma patients. Patients will be monitored for toxicity, antitumor effects and persistence of anti-GD2-CAR T cells. Patients with a PR, SD may receive a 2nd cycle at the next higher dose level a minimum of 60 days following completion of the first cycle if eligibility criteria are met. A maximum of 36 patients may be treated on this study. Given that there is likelihood that some patients with non-osteosarcoma will not meet the criteria for GD2 expression to be eligible for enrollment, up to 72 subjects will be screened to enroll a maximum of 36 patients for treatment. Up to 2-3 patients will be accrued per month, and therefore this study may require up to 2-3 years to complete enrollment and treatment.
The purpose of this study is to be able to supply an experimental combination of drugs called 3F8 and GM-CSF (also called sargramostim) to patients with high-risk neuroblastoma who may benefit from treatment.
The investigators hypothesize that this Phase 2 cellular and adoptive immunotherapy study using human leukocyte antigen (HLA)-haploidentical hematopoietic cell transplantation (HCT) followed by an early, post-transplant infusion of donor natural killer (NK) cells on Day +7 will not only be well-tolerated in this heavily-treated population (safety), but will also provide a mechanism to treat high-risk solid tumors, leading to improved disease control rate (efficacy). Disease control rate is defined as the combination of complete (CR) and partial (PR) response and stable disease (SD). The investigators further propose that this infusion of donor NK cells will influence the development of particular NK and T cell subtypes which will provide immediate/long-term tumor surveillance, infectious monitoring, and durable engraftment. Patients with high-risk solid tumors (Ewings Sarcoma, Neuroblastoma and Rhabdomyosarcoma) who have either measurable or unmeasurable disease and have met eligibility will be enrolled on this trial for a goal enrollment of 20 patients over 4 years.
This phase I/II trial studies the side effects and best dose of adavosertib and irinotecan hydrochloride in treating younger patients with solid tumors that have come back (relapsed) or that have not responded to standard therapy (refractory). Adavosertib and irinotecan hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This study aims to show that 3-dimensional PET/CT imaging with a new novel PET tracer (called [124I]mIBG) can detect as many or more sites of neuroblastoma (a type of childhood cancer) compared to the recommended 1-dimensional routine scans (called [123I]mIBG planar scintigraphy).