Clinical Trials Logo

Neuroblastoma clinical trials

View clinical trials related to Neuroblastoma.

Filter by:

NCT ID: NCT04238819 Active, not recruiting - Clinical trials for Refractory Solid Tumor

A Study of Abemaciclib (LY2835219) in Combination With Other Anti-Cancer Treatments in Children and Young Adult Participants With Solid Tumors, Including Neuroblastoma

Start date: November 9, 2020
Phase: Phase 1/Phase 2
Study type: Interventional

The study's purpose is to see if the drug, abemaciclib, is safe and effective when given with other drugs to kill cancer cells. The study is open to children and young adults with solid tumors, including neuroblastoma, that did not respond or grew during other anti-cancer treatment. For each participant, the study is estimated to last up to 2 years.

NCT ID: NCT04195555 Active, not recruiting - Clinical trials for Refractory Malignant Solid Neoplasm

Ivosidenib in Treating Patients With Advanced Solid Tumors, Lymphoma, or Histiocytic Disorders With IDH1 Mutations (A Pediatric MATCH Treatment Trial)

Start date: July 20, 2020
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well ivosidenib works in treating patients with solid tumors that have spread to other places in the body (advanced), lymphoma, or histiocytic disorders that have IDH1 genetic alterations (mutations). Ivosidenib may block the growth of cancer cells that have specific genetic changes in an important signaling pathway called the IDH pathway.

NCT ID: NCT04106219 Active, not recruiting - Neuroblastoma Clinical Trials

A Study of LY3295668 Erbumine in Participants With Relapsed/Refractory Neuroblastoma

Start date: June 11, 2020
Phase: Phase 1
Study type: Interventional

The reason for this study is to see if the study drug LY3295668 erbumine is safe in participants with relapsed/refractory neuroblastoma.

NCT ID: NCT04029688 Active, not recruiting - Solid Tumors Clinical Trials

A Study Evaluating the Safety, Tolerability, Pharmacokinetics and Preliminary Activity of Idasanutlin in Combination With Either Chemotherapy or Venetoclax in Treatment of Pediatric and Young Adult Participants With Relapsed/Refractory Acute Leukemias or Solid Tumors

Start date: January 27, 2020
Phase: Phase 1/Phase 2
Study type: Interventional

This is a Phase I/II, multicenter, open-label, multi-arm study designed to evaluate the safety, tolerability, pharmacokinetics, and preliminary efficacy of idasanutlin, administered as a single agent or in combination with chemotherapy or venetoclax, in pediatric and young adult participants with acute leukemias or solid tumors. This study is divided into three parts: Part 1 will begin with dose escalation of idasanutlin as a single agent in pediatric participants with relapsed or refractory solid tumors to identify the maximum tolerated dose (MTD)/maximum administered dose (MAD) and to characterize dose-limiting toxicities (DLTs). Following MTD/MAD identification, three separate safety run-in cohorts in neuroblastoma, acute myeloid leukemia (AML), and acute lymphoblastic leukemia (ALL) will be conducted to identify the recommended Phase 2 dose (RP2D) of idasanutlin in each combination, with chemotherapy or venetoclax. Part 2 will evaluate the safety and early efficacy of idasanutlin in combination with chemotherapy or venetoclax in newly enrolled pediatric and young adult participants in neuroblastoma, AML,and ALL cohorts at idasanutlin RP2D. Part 3 will potentially be conducted as an additional expansion phase of the idasanutlin combination cohorts in neuroblastoma, AML, or ALL for further response and safety assessment.

NCT ID: NCT03947346 Active, not recruiting - Clinical trials for Neuroblastoma Survivors

Biomarkers of Renal Dysfunction in Neuroblastoma Survivors

Start date: May 9, 2019
Phase:
Study type: Observational

The main purpose of this study is to learn more about biomarkers of kidney function in the blood and urine of neuroblastoma survivors. A biomarker is a biological molecule found in blood, urine, other body fluids, or tissues that is a sign of a normal or abnormal process, or of a condition or disease. A biomarker may be used to see how well the body responds to a treatment for a disease or condition.

NCT ID: NCT03794349 Active, not recruiting - Clinical trials for Recurrent Neuroblastoma

Irinotecan Hydrochloride, Temozolomide, and Dinutuximab With or Without Eflornithine in Treating Patients With Relapsed or Refractory Neuroblastoma

Start date: July 8, 2019
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well irinotecan hydrochloride, temozolomide, and dinutuximab work with or without eflornithine in treating patients with neuroblastoma that has come back (relapsed) or that isn't responding to treatment (refractory). Drugs used in chemotherapy, such as irinotecan hydrochloride and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as dinutuximab, may induce changes in the body's immune system and may interfere with the ability of tumor cells to grow and spread. Eflornithine blocks the production of chemicals called polyamines that are important in the growth of cancer cells. Giving eflornithine with irinotecan hydrochloride, temozolomide, and dinutuximab, may work better in treating patients with relapsed or refractory neuroblastoma.

NCT ID: NCT03786783 Active, not recruiting - Clinical trials for Ganglioneuroblastoma

Dinutuximab, Sargramostim, and Combination Chemotherapy in Treating Patients With Newly Diagnosed High-Risk Neuroblastoma

Start date: March 4, 2019
Phase: Phase 2
Study type: Interventional

This phase II pilot trial studies the side effects and how well dinutuximab and sargramostim work when combined with chemotherapy in patients with high-risk neuroblastoma. Immunotherapy with monoclonal antibodies, such as dinutuximab, may induce changes in the body's immune system and may interfere with the ability of tumor cells to grow and spread. Sargramostim helps the body produce normal infection-fighting white blood cells. These cells also help the dinutuximab work better. Giving chemotherapy before a stem cell transplant, with drugs such as cisplatin, etoposide, vincristine, doxorubicin, cyclophosphamide, thiotepa, melphalan, etoposide, carboplatin, topotecan, and isotretinoin, helps kill cancer cells that are in the body and helps make room in a patient's bone marrow for new blood-forming cells (stem cells). Giving dinutuximab and sargramostim with combination chemotherapy may work better than combination chemotherapy alone in treating patients with high-risk neuroblastoma.

NCT ID: NCT03709680 Active, not recruiting - Solid Tumors Clinical Trials

Study Of Palbociclib Combined With Chemotherapy In Pediatric Patients With Recurrent/Refractory Solid Tumors

Start date: May 24, 2019
Phase: Phase 1/Phase 2
Study type: Interventional

A study to learn about safety and find out maximum tolerable dose of palbociclib given in combination with chemotherapy (temozolomide with irinotecan or topotecan with cyclophosphamide) in children, adolescents and young adults with recurrent or refractory solid tumors (phase 1). Neuroblastoma tumor specific cohort to further evaluate antitumor activity of palbociclib in combination with topotecan and cyclophosphamide in children, adolescents, and young adults with recurrent or refractory neuroblastoma. Phase 2 to learn about the efficacy of palbociclib in combination with irinotecan and temozolomide when compared with irinotecan and temozolomide alone in the treatment of children, adolescents, and young adults with recurrent or refractory Ewing sarcoma (EWS).

NCT ID: NCT03698994 Active, not recruiting - Clinical trials for Advanced Malignant Solid Neoplasm

Ulixertinib in Treating Patients With Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With MAPK Pathway Mutations (A Pediatric MATCH Treatment Trial)

Start date: November 14, 2018
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well ulixertinib works in treating patients with solid tumors that have spread to other places in the body (advanced), non-Hodgkin lymphoma, or histiocytic disorders that have a genetic alteration (mutation) in a signaling pathway called MAPK. A signaling pathway consists of a group of molecules in a cell that control one or more cell functions. Genes in the MAPK pathway are frequently mutated in many types of cancers. Ulixertinib may stop the growth of cancer cells that have mutations in the MAPK pathway.

NCT ID: NCT03635632 Active, not recruiting - Uveal Melanoma Clinical Trials

C7R-GD2.CART Cells for Patients With Relapsed or Refractory Neuroblastoma and Other GD2 Positive Cancers (GAIL-N)

Start date: April 23, 2019
Phase: Phase 1
Study type: Interventional

This study is for patients with neuroblastoma, sarcoma, uveal melanoma, breast cancer, or another cancer that expresses a substance on the cancer cells called GD2. The cancer has either come back after treatment or did not respond to treatment. Because there is no standard treatment at this time, patients are asked to volunteer in a gene transfer research study using special immune cells called T cells. T cells are a type of white blood cell that helps the body fight infection. The body has different ways of fighting infection and disease. No single way seems perfect for fighting cancers. This research study combines two different ways of fighting cancer: antibodies and T cells. Both antibodies and T cells have been used to treat patients with cancers. They have shown promise but have not been strong enough to cure most patients. We have found from previous research that we can put a new gene into T cells that will make them recognize cancer cells and kill them. In our last clinical trial we made a gene called a chimeric antigen receptor (CAR) from an antibody that recognizes GD2, a substance found on almost all neuroblastoma cells (GD2-CAR). We put this gene into the patients' own T cells and gave them back to 11 neuroblastoma patients. We saw that the cells did grow for a while, but started to disappear from the blood after 2 weeks. We think that if T cells are able to last longer they may have a better chance of killing GD2 positive tumor cells. Therefore, in this study we will add a new gene to the GD2 T cells that can cause the cells to live longer. T cells need substances called cytokines to survive and the cells may not get enough cytokines after infusion. We have added the gene C7R that gives the cells a constant supply of cytokine and helps them to survive for a longer period of time. In other studies using T cells, investigators found that giving chemotherapy before the T cell infusion can improve the amount of time the T cells stay in the body and therefore the effect the T cells can have. This is called lymphodepletion and we think that it will allow the T cells to expand and stay longer in the body, and potentially kill cancer cells more effectively. The GD2-C7R T cells are an investigational product not approved by the Food and Drug Administration. The purpose of this study is to find the largest safe dose of GD2-C7R T cells, and also to evaluate how long they can be detected in the blood and what affect they have on cancer.