View clinical trials related to Nervous System Neoplasms.
Filter by:RATIONALE: The TP-38 toxin can locate tumor cells and kill them without harming normal cells. Giving TP-38 toxin directly into the tumor may kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of TP-38 toxin administered directly into the brain and to see how well it works in treating young patients with recurrent or progressive supratentorial high-grade glioma.
RATIONALE: Drugs used in chemotherapy, such as CC-8490, work in different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase I trial to study the effectiveness of CC-8490 in treating patients who have recurrent or refractory high-grade gliomas.
RATIONALE: Monoclonal antibodies, such as rituximab, can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Drugs used in chemotherapy, such as carboplatin, cyclophosphamide, etoposide, etoposide phosphate, and cytarabine, use different ways to stop cancer cells from dividing so they stop growing or die. Osmotic blood-brain barrier disruption uses certain drugs to open the blood vessels around the brain and allow anticancer substances to be delivered directly to the brain tumor. Chemoprotective drugs such as sodium thiosulfate may protect normal cells from the side effects of carboplatin-based chemotherapy. Combining rituximab with chemotherapy given with osmotic blood-brain barrier disruption plus sodium thiosulfate may kill more cancer cells. PURPOSE: Phase II trial to study the effectiveness of combining rituximab with combination chemotherapy given with osmotic blood-brain barrier disruption plus sodium thiosulfate in treating patients who have refractory or recurrent primary CNS lymphoma.
RATIONALE: Donepezil and EGb761 may be effective in improving neurocognitive function (such as thinking, attention, concentration, and memory) and may improve quality of life in patients who have undergone radiation therapy to the brain. PURPOSE: This phase II trial is studying how well donepezil or EGb761 works in improving neurocognitive function in patients who have undergone radiation therapy for primary brain tumor or brain metastases.
RATIONALE: Drugs used in chemotherapy, such as ixabepilone, work in different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: This phase II trial is studying how well ixabepilone works in treating patients with metastatic germ cell tumors that are refractory to cisplatin.
RATIONALE: Vaccines may make the body build an immune response to kill tumor cells. Colony-stimulating factors such as sargramostim increase the number of immune cells found in bone marrow or peripheral blood. Combining vaccine therapy with sargramostim may cause a stronger immune response and kill more tumor cells. PURPOSE: This phase I trial is studying the side effects of vaccine therapy when given together with sargramostim in treating patients with advanced sarcoma or brain tumor.
RATIONALE: Celecoxib may stop the growth of tumor cells by blocking the enzymes necessary for their growth. It is not yet known whether the effectiveness of celecoxib in treating glioblastoma multiforme is decreased in patients who are receiving anticonvulsant drugs and undergoing radiation therapy. PURPOSE: Phase II trial to study the effectiveness of celecoxib in treating patients who are receiving anticonvulsant drugs and undergoing radiation therapy for newly diagnosed glioblastoma multiforme.
RATIONALE: Vaccines made from a person's white blood cells mixed with tumor proteins may make the body build an immune response to kill tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of vaccine therapy in treating patients with malignant glioma.
RATIONALE: Drugs used in chemotherapy such as methotrexate and temozolomide use different ways to stop cancer cells from dividing so they stop growing or die. Monoclonal antibodies such as rituximab can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Radiation therapy uses high-energy x-rays to damage cancer cells. Combining methotrexate, temozolomide, and rituximab with radiation therapy may kill more cancer cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of temozolomide when given together with methotrexate and rituximab followed by radiation therapy and to see how well they work in treating patients with primary central nervous system lymphoma.
RATIONALE: Cyproheptadine and megestrol may improve appetite and help prevent weight loss in children with cancer. PURPOSE: This phase II trial is studying how well cyproheptadine and megestrol work in improving appetite and preventing weight loss in children with cachexia caused by cancer or cancer treatment.