Clinical Trials Logo

Nervous System Neoplasms clinical trials

View clinical trials related to Nervous System Neoplasms.

Filter by:

NCT ID: NCT00255671 Completed - Metastatic Cancer Clinical Trials

Acute Side Effects in Patients Who Are Undergoing Stereotactic Radiosurgery for Brain Tumors or Other Brain Disorders

Start date: May 2005
Phase:
Study type: Observational

RATIONALE: Learning about the side effects of stereotactic radiosurgery in patients with brain tumors or other brain disorders may help doctors plan treatment and help patients live more comfortably. PURPOSE: This clinical trial is studying the acute side effects in patients who are undergoing stereotactic radiosurgery for brain tumors or other brain disorders.

NCT ID: NCT00253721 Terminated - Lymphoma Clinical Trials

Melphalan With BBBD in Treating Patients With Brain Malignancies

Start date: May 1998
Phase: Phase 1
Study type: Interventional

RATIONALE: Drugs used in chemotherapy, such as melphalan, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving drugs directly into the arteries around the tumor may kill more tumor cells. Mannitol may open the blood vessels around the brain [Blood-Brain Barrier Disruption (BBBD)]and allow melphalan to be carried directly to the brain tumor. Giving melphalan together with BBBD may be an effective treatment for central nervous system cancer. PURPOSE: This phase I trial is studying side effects and best dose of melphalan when given together with mannitol in treating patients with central nervous system cancer.

NCT ID: NCT00253669 Completed - Clinical trials for Brain and Central Nervous System Tumors

Risk Factors for Developing a Blood Clot in Patients Who Are Undergoing Cancer Treatment for Newly Diagnosed Gliomas

Start date: April 2005
Phase:
Study type: Observational

RATIONALE: Patients with gliomas may be at risk for developing blood clots. Learning about the risk factors for developing blood clots may help doctors plan better treatment for gliomas. PURPOSE: This clinical trial is studying risk factors for developing blood clots in patients who are undergoing cancer treatment for newly diagnosed gliomas.

NCT ID: NCT00253487 Completed - Clinical trials for Brain and Central Nervous System Tumors

Combination Chemotherapy and Radiation Therapy in Treating Younger Patients Who Are Undergoing an Autologous Stem Cell Transplant for Newly Diagnosed Gliomas

Start date: August 2005
Phase: N/A
Study type: Interventional

RATIONALE: Drugs used in chemotherapy, such as temozolomide, busulfan, and O6-benzylguanine, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. O6-benzylguanine may also help temozolomide work better by making tumor cells more sensitive to the drug. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving chemotherapy with a peripheral stem cell transplant or bone marrow transplant, using stem cells from the patient that are genetically-modified in the laboratory to protect them from the side effects of chemotherapy, may allow more chemotherapy to be given so that more tumor cells are killed. Giving combination chemotherapy and radiation therapy together with a peripheral stem cell transplant or bone marrow transplant may kill more tumor cells. PURPOSE: This clinical trial is studying how well giving combination chemotherapy together with radiation therapy works in treating younger patients who are undergoing an autologous stem cell transplant for newly diagnosed gliomas.

NCT ID: NCT00253448 Completed - Clinical trials for Brain and Central Nervous System Tumors

Stereotactic Radiosurgery and Radiation Therapy in Treating Patients With Glioblastoma Multiforme

Start date: December 2002
Phase: Phase 2
Study type: Interventional

RATIONALE: Stereotactic radiosurgery may be able to send x-rays directly to the tumor and cause less damage to normal tissue. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving stereotactic radiosurgery together with radiation therapy may kill more tumor cells. PURPOSE: This phase II trial is studying how well giving stereotactic radiosurgery together with radiation therapy works in treating patients with glioblastoma multiforme.

NCT ID: NCT00243022 Terminated - Clinical trials for Brain and Central Nervous System Tumors

Dietary, Herbal and Alternative Medicine in Glioblastoma Multiforme

Start date: September 2004
Phase: Phase 2
Study type: Interventional

RATIONALE: Giving the herb Boswellia serrata after surgery and radiation therapy may slow the growth of any remaining tumor cells. It is not yet known whether giving Boswellia serrata together with standard treatment is more effective than standard treatment alone in treating high-grade gliomas. PURPOSE: This randomized phase II trial is the study of a combination of complementary and alternative medicine (CAM) herbal supplement intervention as an adjuvant to standard treatment of patients with newly diagnosed and recurrent high-grade gliomas (HGG). The central hypothesis of this application is that a herbal preparation that inhibits 5-LO activity, will produce measurable biologically meaningful decrease in 5-LO eicosanoid production and brain edema that will be associated with improved survival and quality of life in patients with HGG.

NCT ID: NCT00238277 Terminated - Clinical trials for Brain and Central Nervous System Tumors

Temozolomide During and After Radiation Therapy in Treating Patients Who Have Undergone Previous Surgery and Placement of Gliadel Wafers for Newly Diagnosed Glioblastoma Multiforme

Start date: February 15, 2005
Phase: Phase 2
Study type: Interventional

RATIONALE: Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving temozolomide during and after radiation therapy may kill any tumor cells that remain after surgery and placement of Gliadel wafers. PURPOSE: This phase II trial is studying how well giving temozolomide during and after radiation therapy works in treating patients who have undergone previous surgery and placement of Gliadel wafers for newly diagnosed glioblastoma multiforme.

NCT ID: NCT00238264 Completed - Brain Tumor Clinical Trials

Radiation Therapy in Treating Young Patients With Gliomas

Start date: November 2006
Phase: Phase 2
Study type: Interventional

RATIONALE: Specialized radiation therapy that delivers radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. PURPOSE: This phase II trial is studying how well radiation therapy works in treating young patients with gliomas.

NCT ID: NCT00238173 Terminated - Clinical trials for Brain and Central Nervous System Tumors

Acetylcysteine, Mannitol, Combination Chemotherapy, and Sodium Thiosulfate in Treating Children With Malignant Brain Tumors

Start date: December 2004
Phase: Phase 1
Study type: Interventional

RATIONALE: Drugs used in chemotherapy, such as cyclophosphamide, etoposide phosphate, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. Mannitol may help chemotherapy work better by making it easier for these drugs to get to the tumor. Chemoprotective drugs, such as acetylcysteine and sodium thiosulfate, may protect normal cells from the side effects of chemotherapy. Giving acetylcysteine together with mannitol, combination chemotherapy, and sodium thiosulfate may be an effective treatment for malignant brain tumors. PURPOSE: This phase I trial is studying the side effects and best dose of acetylcysteine when given together with mannitol, combination chemotherapy, and sodium thiosulfate in treating children with malignant brain tumors.

NCT ID: NCT00227032 Terminated - Clinical trials for Brain and Central Nervous System Tumors

Erlotinib in Treating Patients With Progressive Glioblastoma Multiforme

Start date: September 2005
Phase: Phase 1
Study type: Interventional

RATIONALE: Erlotinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I trial is studying the side effects and best dose of erlotinib in treating patients with progressive glioblastoma multiforme.