Neck Pain Clinical Trial
Official title:
Effects of a Single Dry Needling Session of the Obliquus Capitis Inferior on the Altered Sensorimotor Function in People With Neck Pain: a Random Control Trial
Verified date | August 2019 |
Source | University of Valencia |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Neck pain is the 3rd cause of disability worldwide and represents an enormous socioeconomic burden. It has been reported that people with neck pain, with traumatic and non-traumatic onset, have an alteration of the sensorimotor function compared to pain-free people, such as deficits in the head and neck repositioning or alteration of the body balance. It has been suggested that alterations on the proprioception of the suboccipital muscles may cause a decrease in head and neck repositioning accuracy and changes in head and neck positioning patterns. The suboccipital muscles, particularly the obliquus capitis inferior (OCI), has a greater density of muscular spindles compared to lower cervical segments, which is believed to play an important role in the proprioception. The alteration of the JPE is more often found in patients with a dysfunction in the upper cervical spine, but people with lower dysfunction can also exhibit it. However, no conclusive results on JPE have been reported with articular techniques targeting the upper cervical spine. On the contrary, positive results on this test have been observed after the retraining of the upper cervical muscles. As OCI is a deep muscle, dry needling seems to be the most appropriate passive modality of treatment to target that muscle and restore the abnormal cervical sensorimotor control. However, this hypothesis has never been tested.
Status | Completed |
Enrollment | 40 |
Est. completion date | June 30, 2019 |
Est. primary completion date | June 15, 2019 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years to 65 Years |
Eligibility |
Inclusion Criteria: - Neck pain longer than 3 months (traumatic or non-traumatic) - Neck disability index (NDI) =10 - Visual analogue scale (VAS) =3 - Joint position error (JPE) =4.5º determined in the physical examination prior to enrollment Exclusion Criteria: - Previous cervical spine surgery - Spine fracture - Any neurological signs - Cervical stenosis - Needle phobia/fear of needles - Anticoagulant medication consumption - Pregnancy - Known or suspected vestibular pathology - Vertigo or dizziness from ear or brain disorders, sensory nerve pathways (e.g. BPPV). |
Country | Name | City | State |
---|---|---|---|
Spain | University of Valencia | Valencia |
Lead Sponsor | Collaborator |
---|---|
University of Valencia |
Spain,
Audette I, Dumas JP, Côté JN, De Serres SJ. Validity and between-day reliability of the cervical range of motion (CROM) device. J Orthop Sports Phys Ther. 2010 May;40(5):318-23. doi: 10.2519/jospt.2010.3180. — View Citation
Hall T, Robinson K. The flexion-rotation test and active cervical mobility--a comparative measurement study in cervicogenic headache. Man Ther. 2004 Nov;9(4):197-202. — View Citation
Hall TM, Robinson KW, Fujinawa O, Akasaka K, Pyne EA. Intertester reliability and diagnostic validity of the cervical flexion-rotation test. J Manipulative Physiol Ther. 2008 May;31(4):293-300. doi: 10.1016/j.jmpt.2008.03.012. — View Citation
Hallgren RC, Andary MT, Wyman AJ, Rowan JJ. A standardized protocol for needle placement in suboccipital muscles. Clin Anat. 2008 Sep;21(6):501-8. doi: 10.1002/ca.20660. — View Citation
Jull G, Falla D, Treleaven J, Hodges P, Vicenzino B. Retraining cervical joint position sense: the effect of two exercise regimes. J Orthop Res. 2007 Mar;25(3):404-12. — View Citation
Kamper SJ, Grootjans SJ, Michaleff ZA, Maher CG, McAuley JH, Sterling M. Measuring pain intensity in patients with neck pain: does it matter how you do it? Pain Pract. 2015 Feb;15(2):159-67. doi: 10.1111/papr.12169. Epub 2014 Jan 17. — View Citation
Kulkarni V, Chandy MJ, Babu KS. Quantitative study of muscle spindles in suboccipital muscles of human foetuses. Neurol India. 2001 Dec;49(4):355-9. — View Citation
Mitchell UH, Stoneman P, Larson RE, Page GL. The Construction of Sham Dry Needles and Their Validity. Evid Based Complement Alternat Med. 2018 Jun 14;2018:9567061. doi: 10.1155/2018/9567061. eCollection 2018. — View Citation
Reid SA, Callister R, Katekar MG, Rivett DA. Effects of cervical spine manual therapy on range of motion, head repositioning, and balance in participants with cervicogenic dizziness: a randomized controlled trial. Arch Phys Med Rehabil. 2014 Sep;95(9):1603-12. doi: 10.1016/j.apmr.2014.04.009. Epub 2014 May 2. — View Citation
Revel M, Andre-Deshays C, Minguet M. Cervicocephalic kinesthetic sensibility in patients with cervical pain. Arch Phys Med Rehabil. 1991 Apr;72(5):288-91. — View Citation
Silva AG, Cruz AL. Standing balance in patients with whiplash-associated neck pain and idiopathic neck pain when compared with asymptomatic participants: A systematic review. Physiother Theory Pract. 2013 Jan;29(1):1-18. doi: 10.3109/09593985.2012.677111. Epub 2012 Apr 20. Review. — View Citation
Swait G, Rushton AB, Miall RC, Newell D. Evaluation of cervical proprioceptive function: optimizing protocols and comparison between tests in normal subjects. Spine (Phila Pa 1976). 2007 Nov 15;32(24):E692-701. — View Citation
Takasaki H, Hall T, Oshiro S, Kaneko S, Ikemoto Y, Jull G. Normal kinematics of the upper cervical spine during the Flexion-Rotation Test - In vivo measurements using magnetic resonance imaging. Man Ther. 2011 Apr;16(2):167-71. doi: 10.1016/j.math.2010.10.002. Epub 2010 Nov 4. — View Citation
Treleaven J, Clamaron-Cheers C, Jull G. Does the region of pain influence the presence of sensorimotor disturbances in neck pain disorders? Man Ther. 2011 Dec;16(6):636-40. doi: 10.1016/j.math.2011.07.008. Epub 2011 Sep 3. — View Citation
Werner IM, Ernst MJ, Treleaven J, Crawford RJ. Intra and interrater reliability and clinical feasibility of a simple measure of cervical movement sense in patients with neck pain. BMC Musculoskelet Disord. 2018 Oct 5;19(1):358. doi: 10.1186/s12891-018-2287-0. — View Citation
* Note: There are 15 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Change in Joint position error (JPE) | Cervical JPE will be measured using a laser-pointer attached to a lightweight headband. In sitting position, 90 cm away from a target and blindfolded, patients will be requested to rotate to the right and to the left. An absolute error between the starting and end points will be calculated in millimeters and then converted to degrees. Six repetitions will be performed each side according to recommendations and the mean will be calculated. | Baseline, immediate post-intervention follow-up and one-week post-intervention follow-up | |
Secondary | Change in Cervical movement sense | Participants will trace with the laser-pointer in their heads a specific pattern (located at 100 cm distance) at two velocities (accurate; accurate and fast). This test will be recorded and later examined at slow motion by a video analysis programme. Time (total time taken to complete the pattern), error frequency (number of deviations) and error magnitude (sum of deviations multiplied by the distance from the central line) will be measured. This test has shown high intra and inter-rater reliability. | Baseline, immediate post-intervention follow-up and one-week post-intervention follow-up | |
Secondary | Change in Postural stability | Patients will be positioned on the force platform. The postural sway will be measured in 4 conditions as follows: (neutral) narrow stance (feet close together) on firm and soft surfaces with eyes open and eyes closed | Baseline, immediate post-intervention follow-up and one-week post-intervention follow-up | |
Secondary | Change in Active cervical range of motion (rotation) | Cervical ROM in rotation will be measured bilaterally with the patients in sitting position using a Cervical Range of Motion (CROM) instrument, which has been shown to be a reliable and valid tool. | Baseline, immediate post-intervention follow-up and one-week post-intervention follow-up | |
Secondary | Change in Cervical flexion-rotation test (CFRT) | Upper cervical ROM in rotation will be measured bilaterally with the CFRT using the CROM. Participants will be requested to lie in supine on the plitch and the examiner will perform rotation passively with the rest of the cervical spine blocked in full flexion position. This test has shown to be a valid and reliable tool to measure the range of motion of the upper cervical spine (C1-C2). | Baseline, immediate post-intervention follow-up and one-week post-intervention follow-up | |
Secondary | Change in Smooth pursuit neck torsion (SPNT) | This test is understood to assess eye movement disturbances due to altered cervical afferent input. Patients will be sat in a neutral position on a swivel chair and will be requested to follow a pen in the hand of the examiner (with their eyes) whilst keeping their head still. The pen will be moved at the participant's natural focal length across their field of vision horizontally in a visual range of 40 degrees several times. The speed of the movement will be 20 degrees per second. Pursuit of the eyes will be observed. The test will be repeated with the neck torsioned to the left and right by rotating the trunk and shoulders to the right 45 degrees, keeping the head still. This is done so that input to the vestibular system is avoided. Increased catch up saccades in the torsion position especially as they cross the midline and/or reproduction of symptoms in the torsion position compared to the neutral position is a positive test. |
Baseline, immediate post-intervention follow-up and one-week post-intervention follow-up | |
Secondary | Change in Neck pain intensity | Neck pain intensity will be measured using a visual analogue scale (VAS). Patients will be requested to grade their pain intensity of neck pain experienced on a 0-100 mm horizontal line (0 mm= no pain and 100 mm= worst pain imaginable). | Baseline and one-week post-intervention follow-up |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT05293847 -
Postural Based Telerehabilitation in Mechanic Neck Pain
|
N/A | |
Completed |
NCT04060004 -
The Effects of Dry Needling on the Superficial Neck Musculature
|
N/A | |
Recruiting |
NCT06204627 -
TDCS* and Laterality Trainnning in Patients With Chronic Neck Pain
|
N/A | |
Active, not recruiting |
NCT05870371 -
The Effect of the Feldenkrais Method on Pain and Function in Patients With Chronic Neck Pain
|
N/A | |
Completed |
NCT06049316 -
Scapular Stabilization vs Functional Exercises on Chronic Neck Pain
|
N/A | |
Recruiting |
NCT05944354 -
Wearable Spine Health System for Military Readiness
|
||
Completed |
NCT02882061 -
Examination of Cervical Thoracic Differentiation Testing in Individuals With Neck Pain
|
N/A | |
Completed |
NCT03147508 -
Investigating Clinical Indicators of Spine Related Dysfunction Patterns. A Clinical Study on Neck Pain Patients.
|
||
Completed |
NCT02731014 -
Dry Needling for Patients With Neck Pain
|
N/A | |
Completed |
NCT02904668 -
Self-management Program in Chronic Neck Pain
|
N/A | |
Completed |
NCT02638987 -
EMG Activity Before, During and After Dry Needling
|
N/A | |
Active, not recruiting |
NCT02843269 -
Multiple-component Workplace FRamed Intervention to Decrease Occupational Muscle Pain - FRIDOM
|
N/A | |
Enrolling by invitation |
NCT02485795 -
Observational Study of the Impact of Genetic Testing on Healthcare Decisions and Care in Interventional Pain Management
|
N/A | |
Completed |
NCT02245425 -
Comparison of Two Thoracic Manipulation Techniques to Improve Neck Pain
|
N/A | |
Completed |
NCT02225873 -
The Effectiveness of Exercises Protocol in Management of Neck Pain
|
N/A | |
Completed |
NCT02235207 -
Effectiveness of Fustra—Exercise Program in Neck and Low Back Pain
|
N/A | |
Completed |
NCT02190890 -
Dry Needling Dosage in the Treatment of Myofascial Neck Pain
|
N/A | |
Completed |
NCT02051478 -
Thoracic Manipulation and Mobilization for Neck Pain
|
N/A | |
Completed |
NCT01938209 -
A Comparison of Seated Thoracic Manipulation and Targeted Supine Thoracic Manipulation on Cervical Flexion Motion and Pain
|
N/A | |
Completed |
NCT01205542 -
Work Place Adjusted Intelligent Physical Exercise Reducing Musculoskeletal Pain in Shoulder and Neck (VIMS) - Shoulder Function
|
N/A |