Clinical Trials Logo

Narcolepsy 1 clinical trials

View clinical trials related to Narcolepsy 1.

Filter by:
  • Completed  
  • Page 1

NCT ID: NCT03754348 Completed - Narcolepsy 1 Clinical Trials

Microglial Activation in Narcolepsy Type 1 and Kleine-Levin Syndrome: Positron Emission Tomography (PET) Study in [18F] DPA-714

NARCOGLIE
Start date: January 15, 2019
Phase: N/A
Study type: Interventional

Type 1 narcolepsy (NT1) is a chronic sleep disorder caused by the selective and irreversible loss of neurons from the hypothalamus, which synthesizes a neurotransmitter: hypocretin (Hcrt) / orexin. The exact cause of this destruction is still unknown, but the autoimmune hypothesis is strongly favored, involving the interaction of genetic and environmental factors. The treatment of NT1 is currently only symptomatic, targeting hypersomnolence and cataplexy. To prevent the destruction of Hcrt neurons, immunomodulatory agents have been tested, with varying efficacy, probably due to varying degrees of hypothalamic impairment and stages of disease progression. During microglial activation, a condition associated with neuroinflammation in the brain, there is an increase in the mitochondrial translocation protein (TSPO), which can be quantified in vivo by specific tracers, such as the [18F] DPA- 714, in positron emission tomography (PET), a very sensitive nuclear imaging technique. The aim here is to study microglial activation in PET [18F] DPA-714 in NT1 patients with recent evolution in comparison with controls; then analyze the effect of age, and the severity of symptoms on this PET imaging biomarker. The hypothesis is that microglial activation, especially of the hypothalamic region, is greater in NT1 than controls.

NCT ID: NCT03356938 Completed - Clinical trials for Idiopathic Hypersomnia

The Role of the Circadian System in Neurological Sleep-wake Disorders

PNP
Start date: November 28, 2017
Phase: N/A
Study type: Interventional

The aim of this study is to investigate the role of the circadian system in patients with neurologic sleep-wake disorders. Therefore, overnight sleep will be distributed over 30 hours into repetitive sleep-wake cycles (poly-nap protocol), so that sleep episodes occur at different circadian phases. Vigilance, attention, risk behavior as well as sleep onset latency will be observed. Ambulatory accelerometer recordings gain more and more attention in the diagnostic work-up of sleep disorders, as they allow to also include the everyday rest-activity rhythm before examinations in the sleep laboratory. Advances of novel devices should improve the detection of rest and activity and therefore the estimation of sleep and wake, especially in patients with neurologic sleep-wake disorders exhibiting fragmented sleep. Two types of actimeters will be applied throughout our study protocol to explore better classification of sleep and wake phases and patterns of the rest-activity rhythm. This study is designed as an observational case-controlled study targeting the disorders of narcolepsy type 1 and idiopathic hypersomnia, and including interventional procedures in the healthy control group (sleep deprivation, sleep restriction) in a counter-balanced design.