Clinical Trials Logo

Clinical Trial Details — Status: Not yet recruiting

Administrative data

NCT number NCT05984745
Other study ID # CoQ10 in MAFLD Patients
Secondary ID
Status Not yet recruiting
Phase Phase 2
First received
Last updated
Start date September 2023
Est. completion date December 2024

Study information

Verified date August 2023
Source Ain Shams University
Contact Mariam Seif
Phone +201112720114
Email mariam.talaat@pharma.asu.edu.eg
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

So far there has been no universal treatment for MAFLD since it has a complex etiology that involves ethnic, genetic, metabolic and environmental factors. However, therapeutic life changes including: diet, weight loss, and physical activity remain the cornerstone of treatment and is recommended by both American and European associations. Inflammatory biomarkers, such as tumor necrosis factor-alpha, and adipokines play key roles in the pathogenesis of MAFLD, hence, the anti-inflammatory and antioxidant effects of coenzyme Q10 especially at high doses that have not been tested are hypothesized to have a beneficial role in improving the systemic inflammation and biochemical variables. This study is conducted to test this hypothesis


Description:

The liver disease with the most continuously rising prevalence rates is metabolic-dysfunction associated fatty liver disease (MAFLD), making us arrive at a conclusion that it might be the liver disease epidemic of the 21st century. It is increasingly diagnosed in many developed and developing countries and is considered the most common cause of chronic liver disease among patients with type 2 diabetes mellitus (T2DM). By 2030, it will be the leading cause for hepatocellular carcinoma (HCC) related liver transplantation (LTx) in western countries. A number of studies have suggested that metabolic associated co-morbidities, such as obesity, type 2 DM, CVD, dyslipidemia, hypertension, metabolic syndrome, hypothyroidism, OSAS, PCOS are major risk factors for MAFLD. It encompasses a wide spectrum of histological pattern, ranging from simple steatosis to steatohepatitis, fibrosis and cirrhosis. The global prevalence of MAFLD is currently estimated to be 25%, but the highest rates are reported from the Middle East 31.8% and South America 30.5%, followed by Asia 27.4%, the USA 24% and Europe 23.7%, whereas MAFLD is less common in Africa 13.5%. Coenzyme Q10 (CoQ10) or ubiquinone is a lipid-soluble and vitamin-like compound, which acts as a pivotal cofactor in the mitochondrial respiratory chain in addition to its role as a natural scavenger of free radicals. It is synthesized by cells of the body and also found in abundance in the human diet. Recent evidence suggests that CoQ10 supplementation might be useful in improving and preventing pathological conditions such as metabolic syndrome, hypertension, diabetes, liver diseases, and insulin resistance Because of its antioxidant activity, it seems that CoQ10 can prevent activation of the inflammatory signaling pathway. Many studies have shown that administration of CoQ10 reduced hepatic oxidative stress and inflammation. Also, other studies observed that CoQ10 supplementation reduced TNF-α production and serum levels of liver aminotransferase and decreased NF-kB expression. In addition, a previously published study showed that a dose of 100 mg/day of CoQ10 for 4 weeks can improve serum AST levels, total antioxidant capacity and waist circumference, but it had a non-significant effect on insulin resistance and MDA levels. The same result was found in the study by Esfahani et al. reporting improvement in AST and ALT concentrations and lower grades of portal inflammation and hepatocellular liver necrosis in thioacetamide-induced liver damage in rats. Yet, some contradicting results were reported by Hodgson et al. were they found a non-significant reduction in body weight after CoQ10 supplementation in patients with T2DM. These contradictions were addressed by Faresi et al. where they tested the effect of the same oral dose of CoQ10 used by Farhangi et al. for 12 weeks, where it had beneficial effects on serum levels of TNF-a, hs-CRP, hepatic enzymes, adiponectin, and NAFLD grades as well as near-significant changes in serum leptin among patients with NAFLD. However, serum IL-6 levels and AAR remained unchanged after CoQ10 supplementation. Till this day, only a few small studies tried to investigate the effect of CoQ10 administration on the degree of steatosis in MAFLD patients and their results failed to show a clear effect, due to the conflicting and limited data. Hence, this encouraged us to study the efficacy and tolerability of a higher dose of CoQ10 especially that it can be safely administered up to a dose of 1200 mg/day. In addition, CoQ10 showed promising effects in previous studies, so the general recommendation was to study its effect in a larger study population, for longer periods.


Recruitment information / eligibility

Status Not yet recruiting
Enrollment 166
Est. completion date December 2024
Est. primary completion date September 2024
Accepts healthy volunteers No
Gender All
Age group 18 Years to 80 Years
Eligibility Inclusion Criteria: All study subjects and prior to consenting to the ICF, laboratory and imaging work-up will be evaluated for the presence of three out of five criteria for metabolic dysregulation in the context of metabolic -dysfunction associated fatty liver disease (MAFLD): 1. Waist circumference (WC) = 102/88 cm for men and women respectively. 2. HDL cholesterol <40 mg/dl in men and <50 mg/dl in women or on specific drug therapy. 3. Plasma Triglycerides = 150 mg/dl or on specific drug therapy. 4. Blood pressure =130 and/or = 85 or on specific anti-hypertensive therapy. 5. Fasting blood glucose = 100 mg/dl or on specific anti hyperglycemic therapy - Patients who agree to sign an informed consent - Adult patients >18 years old. - Males and females - Willing to comply with procedures and follow up - Elevated serum transaminases (1-4 times the ULN) - Imaging evidence of fatty liver: pelviabdominal ultrasound and Fibro- CAP study Exclusion Criteria: - Pregnancy or lactating - Physical or mental abnormalities - HCV infection - HBV infection - Anaemia - Thrombocytopenia - Haematological malignancies - Ongoing alcoholism (Male: >30g/day, Female: >20g/day) - Patients with renal failure - Autoimmune hepatitis - Celiac disease - Wilson's disease - Hemochromatosis - Drugs: Tamoxifen, Valproic acid, Amiodarone, Methotrexate, Steroids, Anticoagulants, All anti-oxidative stress agents, Cos, IUD - Chronic use of systematically immunosuppressive agent or drugs that can affect liver profile. - Hypo/Hyper-thyroidism - Bypass surgeries - TPN (Total Parenteral Nutrition)

Study Design


Related Conditions & MeSH terms


Intervention

Drug:
Coenzyme Q10 Forte® capsules
Coenzyme Q10 in the form of soft gelatin capsules, each capsule containing 100 mg

Locations

Country Name City State
n/a

Sponsors (1)

Lead Sponsor Collaborator
Ain Shams University

References & Publications (10)

Alam MA, Rahman MM. Mitochondrial dysfunction in obesity: potential benefit and mechanism of Co-enzyme Q10 supplementation in metabolic syndrome. J Diabetes Metab Disord. 2014 May 23;13:60. doi: 10.1186/2251-6581-13-60. eCollection 2014. — View Citation

Allen AM, Therneau TM, Larson JJ, Coward A, Somers VK, Kamath PS. Nonalcoholic fatty liver disease incidence and impact on metabolic burden and death: A 20 year-community study. Hepatology. 2018 May;67(5):1726-1736. doi: 10.1002/hep.29546. Epub 2018 Mar 23. — View Citation

Ashkani Esfahani S, Esmaeilzadeh E, Bagheri F, Emami Y, Farjam M. The effect of co-enzyme q10 on acute liver damage in rats, a biochemical and pathological study. Hepat Mon. 2013 Aug 27;13(8):e13685. doi: 10.5812/hepatmon.13685. eCollection 2013. No abstract available. — View Citation

Bravo E, Palleschi S, Rossi B, Napolitano M, Tiano L, D'Amore E, Botham KM. Coenzyme Q metabolism is disturbed in high fat diet-induced non-alcoholic fatty liver disease in rats. Int J Mol Sci. 2012;13(2):1644-1657. doi: 10.3390/ijms13021644. Epub 2012 Feb 2. — View Citation

Farsi F, Mohammadshahi M, Alavinejad P, Rezazadeh A, Zarei M, Engali KA. Functions of Coenzyme Q10 Supplementation on Liver Enzymes, Markers of Systemic Inflammation, and Adipokines in Patients Affected by Nonalcoholic Fatty Liver Disease: A Double-Blind, Placebo-Controlled, Randomized Clinical Trial. J Am Coll Nutr. 2016 May-Jun;35(4):346-53. doi: 10.1080/07315724.2015.1021057. Epub 2015 Jul 9. — View Citation

Fuller B, Smith D, Howerton A, Kern D. Anti-inflammatory effects of CoQ10 and colorless carotenoids. J Cosmet Dermatol. 2006 Mar;5(1):30-8. doi: 10.1111/j.1473-2165.2006.00220.x. — View Citation

McPherson S, Hardy T, Henderson E, Burt AD, Day CP, Anstee QM. Evidence of NAFLD progression from steatosis to fibrosing-steatohepatitis using paired biopsies: implications for prognosis and clinical management. J Hepatol. 2015 May;62(5):1148-55. doi: 10.1016/j.jhep.2014.11.034. Epub 2014 Dec 1. — View Citation

Sohet FM, Neyrinck AM, Pachikian BD, de Backer FC, Bindels LB, Niklowitz P, Menke T, Cani PD, Delzenne NM. Coenzyme Q10 supplementation lowers hepatic oxidative stress and inflammation associated with diet-induced obesity in mice. Biochem Pharmacol. 2009 Dec 1;78(11):1391-400. doi: 10.1016/j.bcp.2009.07.008. Epub 2009 Jul 23. — View Citation

Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, Bugianesi E. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018 Jan;15(1):11-20. doi: 10.1038/nrgastro.2017.109. Epub 2017 Sep 20. — View Citation

Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016 Jul;64(1):73-84. doi: 10.1002/hep.28431. Epub 2016 Feb 22. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary Change in liver steatosis degree Improvement in steatosis degree will be assessed using Fibro-CAP scoring measured in decibels per meter (dB/m) and ranges from 100-400, where 238 to 260 dB/m represents 11-33% fatty change in the liver, 260 to 290 dB/m represents 34-66% fatty change in the liver and > 290 dB/m represents almost 67% or more fatty change in the liver. Baseline and at 12 weeks
Secondary Change in serum levels of liver transaminases (AST and ALT) 3 months post treatment with Coenzyme Q10 Levels of alanine transaminase (ALT) and aspartate aminotransferase (AST) will be measured in serum where normal serum ALT is 7-56 U/L and normal serum AST is 0 to 35 U/L. Baseline and at 12 weeks
Secondary Change in serum levels of tumor necrosis factor-alpha (TNF-a) 3 months post treatment with Coenzyme Q10 TNF-a levels will be assessed in serum Baseline and at 12 weeks
Secondary Change in the quality of life of MAFLD patients Quality of life will be assessed using the Chronic Liver Disease (CLD) questionnaire Baseline and at 12 weeks
Secondary Study the drug's effect on kidney functions by measuring serum creatinine levels Serum creatinine levels will be measured where the normal range is 0.74 to 1.35 mg/dL (61.9 to 114.9 µmol/L) for men and 0.59 to 1.04 mg/dL (53 to 97.2 µmol/L) for women Baseline and at 12 weeks
See also
  Status Clinical Trial Phase
Completed NCT06101433 - The Effect of Soy Isoflavones on Non-alcoholic Fatty Liver Disease and the Level of FGF-21 and Fetuin A N/A
Completed NCT03289897 - Non-invasive Rapid Assessment of NAFLD Using Magnetic Resonance Imaging With LiverMultiScan N/A
Recruiting NCT05479721 - LITMUS Imaging Study
Completed NCT05527938 - Web-based Interventions on Nonalcoholic Fatty Liver Disease (NAFLD) in Obese Children N/A
Recruiting NCT06308757 - Role of the Very Low Calorie Ketogenic Diet (VLCKD) in Patients With Non-Alcoholic Steatohepatitis (NASH) With Fibrosis N/A
Completed NCT02654977 - CLINICAL PROTOCOL to Investigate the Long-term Safety and Efficacy of Metreleptin in Various Forms of Partial Lipodystrophy Phase 2
Completed NCT02927184 - Safety and Tolerability of VK2809 in Patients With Primary Hypercholesterolemia and Non-Alcoholic Fatty Liver Disease Phase 2
Recruiting NCT06047847 - Determination of Biological Activity of Enriched Serum Following TOTUM-448 Consumption N/A
Active, not recruiting NCT03534908 - Nonalcoholic Fatty Liver Disease and Cardiovascular Disease: the Correlation Analysis and Risk Prediction Model Study
Recruiting NCT06098417 - Biomarkers in the Diagnosis and Prognosis of NAFLD
Recruiting NCT04564391 - Whey or Casein - Liver Fat Reduction and Metabolic Improvement by Fast vs. Slow Proteins N/A
Not yet recruiting NCT05052515 - The Effects of Natural Extracts Supplementation on NASH Patients N/A
Recruiting NCT02459496 - Diabetes Nutrition Algorithms in Patients With Overt Diabetes Mellitus N/A
Completed NCT01936779 - Understanding the Role of Dietary Fatty Acids on Liver Fat Metabolism in Humans N/A
Completed NCT05844137 - Improving Detection and Evidence-based Care of NAFLD in Latinx and Black Patients With Type 2 Diabetes N/A
Recruiting NCT04664036 - Prevalence, Incidence and Characteristics of NAFLD/NASH in Type 1 Diabetes Mellitus
Recruiting NCT04976283 - Effect of Oral Anti-diabetic Medication on Liver Fat in Subjects With Type II Diabetes and Non-alcoholic Fatty Liver Phase 4
Recruiting NCT03587298 - Use of Shear Wave Elastography to Assess Non-alcoholic Fatty Liver Disease (NAFLD)
Completed NCT02952170 - Impact of Weight Loss Surgery in Adolescents With NAFLD N/A
Completed NCT05044130 - Postprandial VLDL-triglyceride Metabolism in Type 2 Diabetes Patients With and Without NAFLD N/A