Myopia Clinical Trial
Official title:
Development and Validation of a Deep Learning-based Myopia and Myopic Maculopathy Detection and Prediction System
Myopia has become a global public health issue. Myopia affects the psychological health of children and adolescents and poses a financial burden. Therefore, early detection and prediction of children at a high risk of myopia development and progression are critical for precise and effective interventions. In this study, we developed a deep learning system DeepMyopia, based on fundus images with the following objectives: 1) to predict myopia onset and progression; 2) To detect myopic macular degeneration for AI-assisted diagnosis; 3) To predict the development of myopic macular degeneration; 4) evaluate its cost-effectiveness.
Myopia has become a global public health issue. Myopia affects the psychological health of children and adolescents and poses a financial burden. Furthermore, as myopia progresses it increases the risk of ocular complications such as myopic macular degeneration, leading to irreversible visual impairment or even blindness. According to the World Health Organization , more than 1 billion people worldwide are living with vision impairment caused by myopia, hyperopia, and other problems due to late detection. Therefore, early detection and prediction of children at a high risk of myopia development and progression are critical for precise and effective interventions. In this study, we developed a deep learning system DeepMyopia, based on fundus images with the following objectives: 1) to predict myopia onset and progression; 2) To detect myopic macular degeneration for AI-assisted diagnosis; 3) To predict the development of myopic macular degeneration; 4) evaluate its cost-effectiveness. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04923841 -
Myopia Control Using Bright Light Therapy, Myopic Defocus and Atropine
|
N/A | |
Active, not recruiting |
NCT04080128 -
Examination of Myopia Progression and Soft Bifocal Contact Lens Myopia Control
|
N/A | |
Active, not recruiting |
NCT05275959 -
Beijing (Peking)---Myopia and Obesity Comorbidity Intervention (BMOCI)
|
N/A | |
Completed |
NCT04604405 -
Effects of 650nm Low Energy Light on Human Retina and Choroid Microcirculation
|
N/A | |
Recruiting |
NCT05594719 -
The Effect of Sun-like Spectrum With Different Spectrum Composition on Retinal Blood Flow
|
N/A | |
Completed |
NCT05594732 -
The Effects of Different Outdoor Light Exposure Modes on Retinal Blood Flow
|
N/A | |
Completed |
NCT04492397 -
Comparing The Performance Of Two Different Daily Disposable Lenses (MIKI)
|
N/A | |
Completed |
NCT04536571 -
Vision Stability and Preference for Soft Toric vs. Soft Spherical Contact Lenses
|
N/A | |
Completed |
NCT06046209 -
Comparing a Monthly Replacement Lens Versus a Daily Disposable Lens
|
N/A | |
Recruiting |
NCT06344572 -
Pivotal Study of SAT-001 in Treatment of Pediatric Patient With Myopia
|
Phase 3 | |
Recruiting |
NCT05611294 -
Contralateral Study of Topography Guided LASIK Versus Small Incision Lenticule Extraction
|
N/A | |
Completed |
NCT05656885 -
Clinical Evaluation of Two Frequent Replacement Soft Spherical Contact Lenses
|
N/A | |
Active, not recruiting |
NCT05534022 -
Clinical Evaluation of a Myopia Control Lens in Slowing Myopia Progression.
|
N/A | |
Completed |
NCT03934788 -
the Clinical Performance of the Oxysoft Daily Disposable Silicone Hydrogel Soft Contact Lens
|
N/A | |
Completed |
NCT03701516 -
Clinical Evaluation of Etafilcon A Contact Lenses Using a Novel Molding Process 2
|
N/A | |
Completed |
NCT05538754 -
Post-Market Evaluation of the EVO ICL
|
N/A | |
Completed |
NCT03139201 -
Clinical Performance of the OxyAqua Daily Disposable Silicone Hydrogel Soft Contact Lens
|
N/A | |
Completed |
NCT02555722 -
Evaluation of the CooperVision, Inc. Fanfilcon A and Enfilcon A Daily Wear Contact Lenses When Used for Frequent Replacement for up to One (1) Month of Daily Wear
|
N/A | |
Not yet recruiting |
NCT06009458 -
Acuity 200™ (Fluoroxyfocon A) Orthokeratology Contact Lens for Overnight Wear
|
N/A | |
Recruiting |
NCT05548478 -
Corneal Endothelial Cell Injury Induced by Mitomycin-C
|
N/A |