View clinical trials related to Myelofibrosis.
Filter by:The purpose of this study is to investigate the safety, pharmacokinetics and preliminary efficacy of combination treatment of ruxolitinib with 5 novel compounds: siremadlin, crizanlizumab, sabatolimab, rineterkib and NIS793 in myelofibrosis (MF) subjects.
This phase II trial studies how well Triplex vaccine works in preventing cytomegalovirus (CMV) infection in patients undergoing a hematopoietic stem cell transplantation. CMV is a virus that may be carried for life and does not cause illness in most healthy individuals. However, in people whose immune systems are lowered (such as those undergoing stem cell transplantation), CMV can reproduce and cause disease and even death. The Triplex vaccine is made up of 3 small pieces of CMV deoxyribonucleic acid (DNA) (the chemical form of genes) placed into a weakened virus called modified vaccinia Ankara (MVA) that may help produce immunity (the ability to recognize and respond to an infection) and reduce the risk of developing complications related to CMV infection.
A Phase 3, multicenter, open-label, randomized study to evaluate the efficacy and safety of fedratinib compared to best available therapy (BAT) in subjects with DIPSS (Dynamic International Prognostic Scoring System)-intermediate or high-risk primary myelofibrosis (PMF), post-polycythemia vera myelofibrosis (post-PV MF), or post-essential thrombocythemia myelofibrosis (post-ET MF) and previously treated with ruxolitinib. The primary objective of the study is to evaluate the percentage of subjects with at least 35% spleen volume reduction in the fedratinib and the BAT arms.
In this research study, our main goal for the ipilimumab portion of the study is to determine the highest dose of ipilimumab that can be given safely in several courses and to determine what side effects are seen in patients with Acute Myeloid Leukemia (AML), Myelodysplastic Syndromes (MDS), Myeloproliferative Neoplasms (MPN), Chronic Myelomonocytic Leukemia (CMML), or Myelofibrosis (MF).
The only curative treatment for patients with myelofibrosis (MF) is allogeneic stem cell transplantation (SCT). Treatment with JAK2 inhibitors like pacritinib improves condition of MF patients, decreases spleen size and might diminish graft-versus-host disease (GvHD), thereby improving the outcome of SCT.
This phase II trial studies how well multi-peptide CMV-modified vaccinia Ankara (CMV-MVA Triplex) vaccination of stem cell donors works in preventing cytomegalovirus (CMV) viremia in participants with blood cancer undergoing donor stem cell transplant. Giving a vaccine to the donors may boost the recipient's immunity to this virus and reduce the chance of CMV disease after transplant.
The standard Johns Hopkins' regimen will be used in study subjects, with the use of donor peripheral blood stem cells, rather than marrow. Clinical outcomes will be defined while focusing efforts on immune reconstitution focusing on immune checkpoint regulators after a related haploidentical stem cell transplant.
This research study is studying a drug called Ruxolitinib as a possible treatment for Myelofibrosis.
This phase II trial studies how well fludarabine phosphate, cyclophosphamide, total body irradiation, and donor stem cell transplant work in treating patients with blood cancer. Drugs used in chemotherapy, such as fludarabine phosphate and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill cancer cells and shrink tumors. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may also replace the patient?s immune cells and help destroy any remaining cancer cells.
This phase II trial studies how well topotecan hydrochloride and carboplatin with or without veliparib work in treating patients with myeloproliferative disorders that have spread to other places in the body and usually cannot be cured or controlled with treatment (advanced), and acute myeloid leukemia or chronic myelomonocytic leukemia. Drugs used in chemotherapy, such as topotecan hydrochloride and carboplatin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Veliparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving topotecan hydrochloride, carboplatin, and veliparib may work better in treating patients with myeloproliferative disorders and acute myeloid leukemia or chronic myelomonocytic leukemia compared to topotecan hydrochloride and carboplatin alone.