View clinical trials related to Myelodysplastic Syndromes.
Filter by:The purpose of this study is to determine the safety and efficacy of TLK199 in patients with myelodysplastic syndrome (MDS).
The purpose of this study is to determine the safety and tolerability of an oral Farnesyl Protein Transferase Inhibitor (SCH 66336) as a single agent in patients with Advanced Myelodysplastic Syndrome, Acute Myelogenous Leukemia, Chronic Myelogenous Leukemia in Blast Crisis, or Acute Lymphoblastic Leukemia.
RATIONALE: Thalidomide may be an effective treatment for anemia caused by myelodysplastic syndrome. PURPOSE: Randomized phase II trial to study the effectiveness of thalidomide in treating anemia in patients who have myelodysplastic syndrome.
This is a study to determine the response rate in patients with myelodysplastic syndromes treated with calcitriol and dexamethasone.
RATIONALE: Drugs used in chemotherapy work in different ways to stop cancer cells from dividing so they stop growing or die. Monoclonal antibodies such as gemtuzumab ozogamicin can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Combining monoclonal antibody therapy with combination chemotherapy may kill more cancer cells. PURPOSE: Phase I trial to study the effectiveness of combining gemtuzumab ozogamicin with combination chemotherapy in treating children who have relapsed or refractory acute myeloid leukemia or myelodysplastic syndrome.
RATIONALE: Giving chemotherapy and total body irradiation before a donor bone marrow transplant helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving antithymocyte globulin and removing the T cells from the donor cells before transplant may stop this from happening. PURPOSE: This phase II trial is studying how well total-body irradiation and chemotherapy followed by T-cell depleted donor bone marrow transplant works in treating young patients with hematologic cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Peripheral stem cell transplantation may be able to replace immune cells that were destroyed by chemotherapy used to kill tumor cells. Sometimes the transplanted cells are rejected by the body's normal tissues. Drugs such as cyclosporine may prevent this from happening. PURPOSE: Phase II trial to study the effectiveness of combination chemotherapy followed by peripheral stem cell transplantation in treating patients who have chronic myelogenous leukemia or myelodysplastic syndrome.
Tipifarnib may stop the growth of cancer cells by blocking the enzymes necessary for their growth. Phase II trial to study the effectiveness of tipifarnib in treating older patients who have previously untreated acute myeloid leukemia
This phase I/II trial studies whether a new kind of blood stem cell (bone marrow) transplant, that may be less toxic, is able to treat underlying blood cancer. Stem cells are "seed cells" necessary to make blood cells. Researchers want to see if using less radiation and less chemotherapy with new immune suppressing drugs will enable a stem cell transplant to work. Researchers are hoping to see a mixture of recipient and donor stem cells after transplant. This mixture of donor and recipient stem cells is called "mixed-chimerism". Researchers hope to see these donor cells eliminate tumor cells. This is called a "graft-versus-leukemia" response.
RATIONALE: Giving low doses of chemotherapy, such as melphalan and fludarabine, and a monoclonal antibody, such as alemtuzumab, before a donor bone marrow or peripheral blood stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune system and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine after the transplant may stop this from happening. PURPOSE: This phase II trial is studying how well fludarabine, melphalan, alemtuzumab, and peripheral stem cell transplant work in treating patients with hematologic cancer.