View clinical trials related to Myelodysplastic Syndromes.
Filter by:This randomized phase III trial studies tipifarnib in treating patients with acute myeloid leukemia (AML) in remission. Tipifarnib may stop the growth of cancer cells by blocking the enzymes necessary for their growth. It is not yet known whether tipifarnib is more effective than observation alone in preventing the recurrence of AML.
RATIONALE: Drugs used in chemotherapy, such as arsenic trioxide, work in different ways to stop cancer cells from dividing so they stop growing or die. Biological therapies such as etanercept may interfere with the growth of the cancer cells. Combining chemotherapy with biological therapy may kill more cancer cells. PURPOSE: This phase I/II trial is studying the side effects of giving arsenic trioxide together with etanercept and to see how well it works in treating patients with myelodysplastic syndromes.
This study hopes to show that specially treated umbilical cord cells, called stem cells, can be safely given to a person after they receive chemoradiation therapy or chemotherapy for their illness. During chemoradiation therapy or chemotherapy, a person loses all of the cells that are needed to make the different types of cells in their blood, including their immune system cells. These cells must be replaced in order for the blood and immune systems to work properly. Some people receive bone marrow transplants or other types of stem cell transplants to get the cells they need. CB001 is being developed as an option for people who need bone marrow transplants or other types of transplants to replace those cells. It is also being developed for people who do not have the option of other types of transplants.
RATIONALE: Sirolimus, tacrolimus, and methotrexate may be effective in preventing acute graft-versus-host disease in patients who are undergoing donor stem cell transplantation. PURPOSE: This phase I/II trial is studying the side effects of sirolimus when given together with tacrolimus and methotrexate and to see how well they work in preventing acute graft-versus-host disease in patients who are undergoing donor stem cell transplantation for hematologic cancer.
This phase II trial studies how well tacrolimus and mycophenolate mofetil works in preventing graft-versus-host disease in patients who have undergone total-body irradiation (TBI) with or without fludarabine phosphate followed by donor peripheral blood stem cell transplant for hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, and TBI before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune system and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and mycophenolate mofetil after the transplant may stop this from happening.
The goal of this clinical research study is to study how effective treatments with clofarabine alone and clofarabine given in combination with ara-C are in the treatment of leukemia and high-risk myelodysplastic syndrome (MDS) in patients who are 60 years or older. The safety of these treatments will also be compared.
This phase I trial is studying the side effects and best dose of rebeccamycin analog in treating patients with relapsed or refractory acute myeloid leukemia, myelodysplastic syndrome, acute lymphoblastic leukemia, or chronic myelogenous leukemia in blast phase. Drugs used in chemotherapy, such as rebeccamycin analog, work in different ways to stop cancer cells from dividing so they stop growing or die
The purpose of this phase II study is to assess the efficacy of AP23573 in patients with specified relapsed or refractory hematological malignancies.
Drugs used in chemotherapy such as CCI-779 work in different ways to stop cancer cells from dividing so they stop growing or die. This phase II trial is studying how well CCI-779 works in treating patients with relapsed or refractory acute myeloid leukemia, acute lymphoblastic leukemia, myelodysplastic syndrome, or chronic myelogenous leukemia in blastic phase
RATIONALE: Drugs used in chemotherapy, such as VNP40101M and hydroxyurea, work in different ways to stop cancer cells from dividing so they stop growing or die. Hydroxyurea may help VNP40101M kill more cancer cells by making cancer cells more sensitive to the drug. PURPOSE: This phase II trial is studying how well giving VNP40101M with hydroxyurea works in treating patients with acute myelogenous leukemia or high-risk myelodysplasia.