View clinical trials related to Myelodysplastic Syndromes.
Filter by:This study assesses feasibility and patient acceptability of using a Fitbit to monitor step count and heart rate in transfusion dependent patients with myelodysplastic syndrome. Information from this study may help researchers understand if there is any correlation between activity level and anemia.
Patients with relapsed/refractory acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) will receive lymphodepleting chemotherapy (Flu/Cy) and two infusions of cytokine-induced memory-like NK cells at the previously defined maximum tolerated dose (MTD), fourteen days apart. Low dose rhIL-2 will be administered to patients for in vivo expansion following cell infusion. Patients will be assessed for anti-leukemic efficacy and safety. Re-infusion of patients who relapsed after clinical response will be considered.
This is a non-randomised, open-label phase I study of an investigational medicinal product (IMP) consisting of a HLA-A*02:01 restricted HA-1H T cell receptor transduced T cell (MDG1021) immunotherapy for relapsed or persistent hematologic malignancies after allogeneic hematopoietic stem cell transplantation. The aim of the study is to determine the recommended phase II dose of MDG1021.
This study is a Phase II, single arm, open label multicenter trial designed to investigate the use of haploidentical donor derived NK cells (K-NK002) for the treatment of patients with high-risk acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) who are undergoing haploidentical donor bone marrow transplantation (HaploBMT). K-NK002 is a NK cell product derived from peripheral blood leukocytes collected from a related donor (HLA-haploidentical matched) and enriched for NK cells with depletion of CD3+ T-lymphocytes (T-cells) followed by enriched ex-vivo expansion and administered to the patient prior to and following BMT.
There are no strategies developed post-stem cell transplant (SCT) for patients who receive allogenic SCT with a significant amount of blasts prior SCT. Novel strategies to treat relapsed AML/MDS and to reduce the incidence of relapse after allogeneic SCT are needed. This study is being done in patients with high-risk MDS or AML who undergo an allogeneic SCT. The study will have two arms, participants who receive an HLA-matched unrelated donor SCT (Arm A) or HLA- haploidentical SCT (Arm B). Following myeloablative conditioning (MAC), GVHD prophylaxis with post-transplantation cyclophosphamide (PTCy), tacrolimus and mycophenolate mofetil will be given per standard of care. At 40-60 days post SCT, If the patient has not had any evidence of Grade II-IV acute graft-versus-host-disease (aGVHD), Nivolumab will be given intravenously every 2 weeks for 4 cycles of consolidation or treatment with Nivolumab. Dose-escalation of Nivolumab will follow the standard 3+3 design where a maximum of three dose levels will be evaluated, with a maximum of 18 patients treated with nivolumab per arm. As the maximum tolerated dose (MTD) of Nivolumab may differ between Arm A and Arm B, dose escalation of nivolumab in each arm will be followed separately following allogeneic SCT. Immunosuppression with tacrolimus will be continued during the cycles of PD-1 blockade to provide a moderate level of GVHD prophylaxis during consolidation or treatment with nivolumab.
To date, allogeneic haematopoietic stem cell transplantation (aHSCT) is the only curative treatment for many paediatric and young adult haematological pathologies (acute leukaemia, myelodysplastic syndromes, haemoglobinopathies, bone marrow aplasia, severe combined immunodeficiency). Despite the major therapeutic progress made over the last 50 years, particularly in terms of supportive care, post-transplant morbidity and mortality remains high. Infectious complications, whose incidence varies between 30 and 60%, are the first cause of mortality in the immediate post-transplant period. In order to protect the patient from the occurrence of severe infectious episodes, aHSCTmust be performed in a highly protected environment (positive pressure chambers). This has implications for the experience and impact of hospitalization on the patient and family. This is particularly true in paediatrics, whether in children, adolescents or young adults, where it is not only the patient's quality of life that is at stake, but also their emotional and psychomotor development. In these patients, prolonged hospitalization (at least 6 weeks) in a sterile room will be responsible for physical deconditioning accompanied by a decrease in muscle mass, itself concomitant with undernutrition, and an increase in sedentary lifestyle. This prolonged hospitalisation in a sterile room, associated with myeloablative treatments, is therefore the cause of social isolation of patients, but it is also often synonymous with physical inactivity leading to a rapid decrease in physical condition, quality of life and an increase in fatigue. Today, the benefits of physical activity (PA) during and after cancer treatment have been widely demonstrated. The objective is to evaluate the feasibility of an adapted physical activity program during the isolation phase for achieving aHSCT in children, adolescents and young adults. This is a prospective, interventional, monocentric cohort study conducted at the Institute of Paediatric Haematology and Oncology in Lyon. The intervention will take place during the isolation phase and consists of an adapted physical activity (APA) program defined at inclusion, integrating supervised sessions with an APA teacher, as well as autonomous sessions. The program is individualized according to age, aerobic capacity, and PA preferences. Sessions are also tailored to the biological, psychological, and social parameters of patients. The total duration of the intervention is 3 months. To date, no PA studies have been performed in patients under 21 years of age requiring aGCSH during the sterile isolation phase. EVAADE will therefore be the first study in this population to offer an innovative procedure with a connected device.
The investigators want to compare the global response rate of patients with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) after six months of treatment with 5-azacitidine on two different doses. First group of 50 mg/m2 for 10 days each 28 days versus 75 mg/m2 for 7 days on 28 days cycles.
The purpose of the study is to compare overall response rate (ORR) between treatment groups in participants with higher-risk Myelodysplastic Syndrome (MDS) or Chronic Myelomonocytic Leukemia (CMML) who are not eligible for Hematopoietic Stem Cell Transplantation (HSCT).
To evaluate safety, immunogenicity and anti-tumor responses of intradermally delivered SNS-301 in patients with ASPH+ high risk MDS and CMML.
The primary purpose of this study is to determine the safety and tolerability of SLN124 for the treatment of non-transfusion-dependent (NTD) β-thalassaemia and low risk myelodysplastic syndrome.