Clinical Trials Logo

Myelodysplastic Syndrome clinical trials

View clinical trials related to Myelodysplastic Syndrome.

Filter by:

NCT ID: NCT03672539 Recruiting - Clinical trials for Myelodysplastic Syndrome

Liposome-encapsulated Daunorubicin-Cytarabine and Gemtuzumab Ozogamicin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia (AML) or High Risk Myelodysplastic Syndrome

Start date: November 7, 2018
Phase: Phase 2
Study type: Interventional

This phase II trial studies the side effects and how well liposome-encapsulated daunorubicin-cytarabine and gemtuzumab ozogamicin work in treating patients with acute myeloid leukemia that has come back (relapsed) or that does not respond to treatment (refractory) or high risk myelodysplastic syndrome. Drugs used in chemotherapy, such as liposome-encapsulated daunorubicin-cytarabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Gemtuzumab ozogamicin is a monoclonal antibody, called gemtuzumab, linked to a toxic agent called calicheamicin. Gemtuzumab ozogamicin attached to CD33 positive cancer cells in a targeted way and delivers calicheamicin to kill them. Giving liposome-encapsulated daunorubicin-cytarabine and gemtuzumab ozogamicin together may be an effective treatment for relapsed or refractory acute myeloid leukemia or high risk myelodysplastic syndrome.

NCT ID: NCT03661307 Recruiting - Clinical trials for Acute Myeloid Leukemia

Quizartinib, Decitabine, and Venetoclax in Treating Participants With Untreated or Relapsed Acute Myeloid Leukemia or High Risk Myelodysplastic Syndrome

Start date: October 31, 2018
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies how well quizartinib, decitabine, and venetoclax work in treating participants with acute myeloid leukemia or high risk myelodysplastic syndrome that is untreated or has come back (relapsed). Quizartinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as decitabine and venetoclax, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving quizartinib and decitabine may work better at treating acute myeloid leukemia and myelodysplastic syndrome.

NCT ID: NCT03630991 Recruiting - Clinical trials for Acute Myeloid Leukemia

Edetate Calcium Disodium or Succimer in Treating Patients With Acute Myeloid Leukemia or Myelodysplastic Syndrome Undergoing Chemotherapy

Start date: October 11, 2018
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of edetate calcium disodium or succimer in treating patients with acute myeloid leukemia or myelodysplastic syndrome undergoing chemotherapy. Edetate calcium disodium or succimer may help to lower the level of metals found in the bone marrow and blood and may help to control the disease and/or improve response to chemotherapy.

NCT ID: NCT03622788 Recruiting - Clinical trials for Acute Myeloid Leukemia

Cytokine-Treated Veto Cells in Treating Patients With Hematologic Malignancies Following Stem Cell Transplant

Start date: August 8, 2019
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies how well cytokine-treated veto cells work in treating patients with hematologic malignancies following stem cell transplant. Giving chemotherapy and total-body irradiation before a stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient, they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Cytokine-treated veto cells may help the transplanted donor cells to develop and grow in recipients without causing graft-versus-host-disease (GVHD - when transplanted donor tissue attacks the tissues of the recipient's body).

NCT ID: NCT03602898 Withdrawn - Clinical trials for Myelodysplastic Syndrome

Comparing ATG or Post-Transplant Cyclophosphamide to Calcineurin Inhibitor-Methotrexate as GVHD Prophylaxis After Myeloablative Unrelated Donor Peripheral Blood Stem Cell Transplantation

Start date: June 1, 2021
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well 3 different drug combinations prevent graft versus host disease (GVHD) after donor stem cell transplant. Calcineurin inhibitors, such as cyclosporine and tacrolimus, may stop the activity of donor cells that can cause GVHD. Chemotherapy drugs, such as cyclophosphamide and methotrexate, may also stop the donor cells that can lead to GVHD while not affecting the cancer-fighting donor cells. Immunosuppressive therapy, such as anti-thymocyte globulin (ATG), is used to decrease the body's immune response and reduces the risk of GVHD. It is not yet known which combination of drugs: 1) ATG, methotrexate, and calcineurin inhibitor 2) cyclophosphamide and calcineurin inhibitor, or 3) methotrexate and calcineurin inhibitor may work best to prevent graft versus host disease and result in best overall outcome after donor stem cell transplant.

NCT ID: NCT03600155 Active, not recruiting - Clinical trials for Myelodysplastic Syndrome

Nivolumab and Ipilimumab After Donor Stem Cell Transplant in Treating Patients With High Risk Refractory or Relapsed Acute Myeloid Leukemia or Myelodysplastic Syndrome

Start date: October 11, 2018
Phase: Phase 1
Study type: Interventional

This phase Ib trial studies the side effects and best dose of nivolumab and ipilimumab after donor stem cell transplant in treating patients with high risk acute myeloid leukemia or myelodysplastic syndrome that does not respond to treatment or has come back. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.

NCT ID: NCT03560752 Active, not recruiting - Clinical trials for Chronic Lymphocytic Leukemia

CMV-MVA Triplex Vaccination of Stem Cell Donors in Preventing CMV Viremia in Participants With Allogeneic Transplant

Start date: August 20, 2018
Phase: Phase 1
Study type: Interventional

This phase II trial studies how well multi-peptide CMV-modified vaccinia Ankara (CMV-MVA Triplex) vaccination of stem cell donors works in preventing cytomegalovirus (CMV) viremia in participants with blood cancer undergoing donor stem cell transplant. Giving a vaccine to the donors may boost the recipient's immunity to this virus and reduce the chance of CMV disease after transplant.

NCT ID: NCT03495167 Completed - Clinical trials for Myelodysplastic Syndrome

Study of SyB C-1101 in Patients With Myelodysplastic Syndrome

Start date: October 6, 2017
Phase: Phase 1
Study type: Interventional

To assess tolerability of SyB C-1101 when administered orally BID for 21 days followed by a 7-day observation period in patients with recurrent/relapsed or refractory myelodysplastic syndrome in order to determine a recommended dose (RD). To assess safety, efficacy and pharmacokinetics.

NCT ID: NCT03494569 Recruiting - Clinical trials for Acute Myeloid Leukemia

Total Marrow and Lymphoid Irradiation, Fludarabine, and Melphalan Before Donor Stem Cell Transplant in Treating Participants With High-Risk Acute Leukemia or Myelodysplastic Syndrome

Start date: July 6, 2018
Phase: Phase 1
Study type: Interventional

This phase I studies the side effects and best dose of total marrow and lymphoid irradiation when given together with fludarabine and melphalan before donor stem cell transplant in treating participants with high-risk acute leukemia or myelodysplastic syndrome. Giving chemotherapy, such as fludarabine and melphalan, and total marrow and lymphoid irradiation before a donor stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.

NCT ID: NCT03471260 Recruiting - Clinical trials for Acute Myeloid Leukemia

Ivosidenib and Venetoclax With or Without Azacitidine in Treating Patients With IDH1 Mutated Hematologic Malignancies

Start date: March 19, 2018
Phase: Phase 1/Phase 2
Study type: Interventional

This phase Ib/II trial studies the side effects and best dose of venetoclax and how well it works when given together with ivosidenib with or without azacitidine, in treating patients with IDH1-mutated hematologic malignancies. Venetoclax and ivosidenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ivosidenib and venetoclax with azacitidine may work better in treating patients with hematologic malignancies compared to ivosidenib and venetoclax alone.