Clinical Trials Logo

Myelodysplastic Syndrome clinical trials

View clinical trials related to Myelodysplastic Syndrome.

Filter by:

NCT ID: NCT02250937 Active, not recruiting - Clinical trials for Acute Myeloid Leukemia

Venetoclax and Sequential Busulfan, Cladribine, and Fludarabine Phosphate Before Donor Stem Cell Transplant in Treating Patients With Acute Myelogenous Leukemia or Myelodysplastic Syndrome

Start date: October 27, 2014
Phase: Phase 2
Study type: Interventional

This randomized phase II trial studies how well venetoclax and sequential busulfan, cladribine, and fludarabine phosphate before donor stem cell transplant work in treating patients with acute myelogenous leukemia or myelodysplastic syndrome. Giving chemotherapy before a donor peripheral blood stem cell transplant helps kill cancer cells in the body and helps make room in the patient's bone marrow for new blood-forming cells (stem cells) to grow. When the healthy stem cells from a donor are infused into a patient, they may help the patient's bone marrow make more healthy cells and platelets and may help destroy any remaining cancer cells.

NCT ID: NCT01894477 Active, not recruiting - Clinical trials for Myelodysplastic Syndrome

Treo/Flu/TBI With Donor Stem Cell Transplant for Patients With Myelodysplastic Syndrome or Acute Myeloid Leukemia

Start date: November 2013
Phase: Phase 2
Study type: Interventional

This randomized phase II trial studies how well treosulfan and fludarabine phosphate, with or without total body irradiation before donor stem cell transplant works in treating patients with myelodysplastic syndrome or acute myeloid leukemia. Giving chemotherapy, such as treosulfan and fludarabine phosphate, and total-body irradiation before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus before and mycophenolate mofetil after the transplant may stop this from happening.

NCT ID: NCT01885689 Active, not recruiting - Clinical trials for Myelodysplastic Syndrome

Clofarabine and Melphalan Before Donor Stem Cell Transplant in Treating Patients With Myelodysplasia, Acute Leukemia in Remission, or Chronic Myelomonocytic Leukemia

Start date: February 10, 2014
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well clofarabine and melphalan before a donor stem cell transplant works in treating patients with a decrease in or disappearance of signs and symptoms of myelodysplasia or acute leukemia (disease is in remission), or chronic myelomonocytic leukemia. Giving chemotherapy, such as clofarabine and melphalan, before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into a patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Giving clofarabine and melphalan before transplant may help prevent the cancer from coming back after transplant, and they may cause fewer side effects than standard treatment.

NCT ID: NCT01746849 Active, not recruiting - Multiple Myeloma Clinical Trials

Palifermin With Leuprolide Acetate for the Promotion of Immune Recovery Following Total Body Irradiation Based T-Cell Depleted Allogeneic Hematopoietic Stem Cell Transplantation

Start date: December 2012
Phase: Phase 2
Study type: Interventional

The purpose of this study is to help determine if palifermin and leuprolide acetate can help the immune system recover faster following a stem cell transplant. Blood stem cells are very young blood cells that grow in the body to become red or white blood cells or platelets. The transplant uses stem cells in the blood from another person. The donor can be a family member or a volunteer donor. This is called an allogeneic stem cell transplant. The investigators want to see if palifermin and leuprolide acetate can help the immune system recover faster after an allogenic transplant because experiments have shown they may be able to do this.

NCT ID: NCT01716364 Active, not recruiting - Multiple Myeloma Clinical Trials

Safety Study of Anti LewisY Chimeric Antigen Receptor in Myeloma, Acute Myeloid Leukemia or Myelodysplastic Syndrome

Start date: January 2010
Phase: Phase 1
Study type: Interventional

Patients with some forms of acute myeloid leukemia (AML) and multiple myeloma (MM) are not cured with conventional therapy and new approaches are needed. For the last 15 years we have investigated the potential of using a patient's own T cells (a type of white blood cell [WBC]) to eradicate the tumor. We have demonstrated the feasibility of this approach in cell culture and animal models of AML and MM. Over the last 5 years we have been preparing to treat patients as part of a Phase I (first in human) clinical trial. The trial treatment involves collecting the patient's own WBCs from the blood by a standard well established and safe process called apheresis. The cells are then cultured in a specialized laboratory (under Good Manufacturing Practice conditions, similar to standards under which pharmaceuticals are produced) over 12 days to convert the cells to specialized tumor-attacking T cells. Early in that culture process the cells are exposed to a virus (that is modified so that it cannot infect or replicate outside the special culture conditions) that contains a special gene. Via the virus, this gene inserts into the patient's T cells in culture and gets incorporated into the T cell's genetic machinery. As the T cells replicate, the new gene produces a protein receptor that becomes part of the patient's T cells. This protein receptor on the T cells has the capacity to specifically recognize and bind to a protein on the leukemia or myeloma cells called the "Lewis Y" antigen. After the modified T cells are infused into the patient, they home into the bone marrow (this tracking is monitored by special radiological techniques) where the new protein receptor on the T cell surface can recognize and bind to the cancer cells (which express Lewis Y). Once bound onto the cancer cells, the T cells get activated and subsequently replicate and kill the cancer cells. The novelty of this approach is that the T-cells will only kill cells that have the Lewis Y on their surface - the cancer cells. Moreover, because there are few normal cells in a person's body that carry Lewis Y, this treatment is likely to only have minor side effects. This gene therapy trial is unique and although the primary purpose is to test the safety of this approach, patients will be monitored closely for anti-tumor responses. As the trial progresses, the dose of T cells infused will increase, in the hope that this will result in a better and stronger immune response to the leukemia or myeloma.

NCT ID: NCT01673308 Active, not recruiting - Clinical trials for Myelodysplastic Syndrome

Lenalidomide After Failure of Hypomethylating Agents in Myelodysplastic Syndrome

VIOLET
Start date: August 2012
Phase: Phase 2
Study type: Interventional

This is a Phase II study to evaluate the efficacy of second-line lenalidomide monotherapy for myelodysplastic syndrome (MDS) patients who failed to hypomethylating agents.

NCT ID: NCT01619761 Active, not recruiting - Clinical trials for Myelodysplastic Syndrome

NK Cells in Cord Blood Transplantation

Start date: May 3, 2013
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best way to give natural killer cells and donor umbilical cord blood transplant in treating patients with hematological malignancies. Giving chemotherapy with or without total body irradiation before a donor umbilical cord blood transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells and natural killer cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.

NCT ID: NCT01522976 Active, not recruiting - Clinical trials for Myelodysplastic Syndrome

Azacitidine With or Without Lenalidomide or Vorinostat in Treating Patients With Higher-Risk Myelodysplastic Syndromes or Chronic Myelomonocytic Leukemia

Start date: March 1, 2012
Phase: Phase 2
Study type: Interventional

This randomized phase II/III trial studies how well azacitidine works with or without lenalidomide or vorinostat in treating patients with higher-risk myelodysplastic syndromes or chronic myelomonocytic leukemia. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, stopping them from dividing, or by stopping them from spreading. Lenalidomide may stop the growth of cancer cells by stopping blood flow to the cancer. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. It is not yet known whether azacitidine is more effective with or without lenalidomide or vorinostat in treating myelodysplastic syndromes or chronic myelomonocytic leukemia.

NCT ID: NCT01494103 Active, not recruiting - Clinical trials for Acute Myeloid Leukemia

Administration of Donor T Cells With the Caspase-9 Suicide Gene

DOTTI
Start date: November 2011
Phase: Phase 1
Study type: Interventional

Patients will be receiving a stem cell transplant as treatment for their disease. As part of the stem cell transplant, patients will be given very strong doses of chemotherapy, which will kill all their existing stem cells. A close relative of the patient will be identified, whose stem cells are not a perfect match for the patient's, but can be used. This type of transplant is called "allogeneic", meaning that the cells are from a donor. With this type of donor who is not a perfect match, there is typically an increased risk of developing GvHD, and a longer delay in the recovery of the immune system. GvHD is a serious and sometimes fatal side-effect of stem cell transplant. GvHD occurs when the new donor cells (graft) recognize that the body tissues of the patient (host) are different from those of the donor. In this study, investigators are trying to see whether they can make special T cells in the laboratory that can be given to the patient to help their immune system recover faster. As a safety measure, we want to "program" the T cells so that if, after they have been given to the patient, they start to cause GvHD, we can destroy them ("suicide gene"). Investigators will obtain T cells from a donor, culture them in the laboratory, and then introduce the "suicide gene" which makes the cells sensitive to a specific drug called AP1903. If the specially modified T cells begin to cause GvHD, the investigators can kill the cells by administering AP1903 to the patient. We have had encouraging results in a previous study regarding the effective elimination of T cells causing GvHD, while sparing a sufficient number of T cells to fight infection and potentially cancer. More specifically, T cells made to carry a gene called iCasp9 can be killed when they encounter the drug AP1903. To get the iCasp9 gene into T cells, we insert it using a virus called a retrovirus that has been made for this study. The AP1903 that will be used to "activate" the iCasp9 is an experimental drug that has been tested in a study in normal donors with no bad side-effects. We hope we can use this drug to kill the T cells. The major purpose of this study is to find a safe and effective dose of "iCasp9" T cells that can be given to patients who receive an allogeneic stem cell transplant. Another important purpose of this study is to find out whether these special T cells can help the patient's immune system recover faster after the transplant than they would have otherwise.

NCT ID: NCT01451268 Active, not recruiting - Clinical trials for Acute Myeloid Leukemia

Phase I/II Study With Oral Panobinostat Maintenance Therapy Following Allogeneic Stem Cell Transplantation in Patients With High Risk Myelodysplastic Syndrome (MDS) or Acute Myeloid Leukemia (AML)

PANOBEST
Start date: January 2011
Phase: Phase 1/Phase 2
Study type: Interventional

The study's primary objective is to determine the maximum tolerated dose (MTD) and dose-limiting toxicity (DLT) of Panobinostat when administered within 150 days after hematopoietic stem cell transplantation (HSCT) and given in conjunction with standard immunosuppressive therapy after HSCT for patients with high-risk Myelodysplastic Syndrome (MDS) or Acute Myeloid Leukemia (AML). Secondary objectives are - To determine safety and tolerability of panobinostat - To determine overall and disease-free survival at 12 months after HSCT - To evaluate immunoregulatory properties of panobinostat - To evaluate patient-reported health-related quality of life (HRQL) The hypothesis of this study is that panobinostat can be an effective drug in preventing relapse of MDS and AML patients with high-risk features after hematopoietic stem cell transplantation with reduced-intensity conditioning (RIC-HSCT) while at the same time reducing graft-versus-host disease (GvHD) with preservation of graft-versus-leukemia (GvL) effect.