View clinical trials related to Myelodysplastic Syndrome.
Filter by:Patients with acute or chronic myeloid leukemia, or myelodysplastic syndrome, underwent allogeneic stem cell transplantation from HLA-identical donor (related or unrelated) after reduced-intensity conditioning regimen. If WT1 expression is detectable on tumor cells, they will receive an immune therapy 60 days after allograft. 6 administrations every 2 weeks of the protein recwt1-A10+AS01B will be administrated. The safety and immunological efficacy of this immune therapy after hematopoietic stem cells transplantation with reduced intensity conditioning will be evaluated.
This randomized clinical trial studies different chemotherapies in treating patients with myelodysplastic syndrome before donor stem cell transplant. Giving chemotherapy before a donor stem cell transplant helps stop the growth of cancer cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells, and may prevent the myelodysplastic syndrome from coming back after the transplant. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.
This randomized clinical trial studies liposomal cytarabine-daunorubicin CPX-351 in treating patients with untreated myelodysplastic syndrome or acute myeloid leukemia. Drugs used in chemotherapy, such as liposomal cytarabine-daunorubicin CPX-351, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
The purpose of this study is to determine whether ATIR is safe and effective in reducing transplant-related mortality and improving overall survival, when infused in patients with a hematologic malignancy following a T-cell depleted stem cell graft from a related haploidentical donor.
Hematopoietic progenitor cell (HPC- primitive cells in the blood, bone marrow and umbilical cord that can restore the bone marrow) transplant can be a curative therapy for the treatment of hematologic malignancies (a disease of the bone marrow and lymph nodes). The source of cells used for the transplant comes from related (sibling) and in cases where there is no sibling match, from unrelated donors through the National Marrow Donor Program. The availability of a suitable donor can be a significant obstacle for patients who need a transplant but do not have a matched donor. Cord blood that has been harvested from an umbilical cord shortly after birth has a rich supply of cells needed for transplant. These stored cord bloods are now being used to transplant adults without a matched donor Advantages to using cord blood includes a readily available source of cells with no risk to the donor during the collection process, immediate source of cells in urgent situations (no lengthy donor work-up)and a reduction in infectious disease transmission to the recipient. One of the main disadvantages is the cord blood has a small number of cells needed for transplant. In an adult, usually two cords are needed and large recipients do not qualify because they need too many cells. This study will use two different preparative regimens (chemotherapy and radiation) followed by one or two umbilical cord units (UBC). The preparative regimen used will be chosen by the physician and is based on patient's age, disease and medical condition at the time of transplant. Multiple objectives for this study include disease-free and overall survival, treatment related mortality, rate of cells taking hold, and the incidence and severity of the transplant complication called graft versus host disease (GVHD).
This phase II trial studies reduced-intensity conditioning before donor stem cell transplant in treating patients with high-risk hematologic malignancies. Giving low-doses of chemotherapy and total-body irradiation before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) before the transplant may help increase this effect.
This phase I trial studies the side effects and best dose of ipilimumab and how well it works in treating patients with high-risk myelodysplastic syndrome or acute myeloid leukemia that has come back or no longer responds to treatment. Monoclonal antibodies, such as ipilimumab, may interfere with the ability of cancer cells to grow and spread.
The purpose of this study is to evaluate the effectiveness and safety of decitabine in the treatment of myelodysplastic syndrome (name of a group of conditions that occur when the blood-forming cells in the bone marrow are damaged) in Chinese patients.
Reviewing Spanish record of myelodysplastic syndromes (RESMD) data base in the group of patients with MDS. The information will be collected retrospectively from diagnosis of MDS, until the date of December 31, 2011.
It has been shown in preclinical experiments with bone marrow from patients with myelodysplastic syndrome that APG101 rescues erythrocytes from premature cell death. This is expected to translate in an improved erythropoiesis and ameliorated anemia in MDS patients. APG101 might, therefore, be a valuable addition to current treatments of low- or intermediate MDS patients suffering from anaemia. Transfusion-dependent patients with low or intermediate risk MDS according to WHO Prognostic Scoring Scale (WPSS) can be included in this study. Treatment consists of 100mg APG101 intravenous as a weekly treatment over 12 weeks + 6 months follow up phase. Primary objective of the trial is safety and tolerability of APG101; secondary objectives are - Hematologic, cytologic and cytogenetic response rate using modified International Working Group (IWG) response criteria - Incidence and time to leukemic progression at 37 weeks - OS (Overall survival) at 37 weeks