Clinical Trials Logo

Clinical Trial Summary

Shoulder instability due to muscle weakness is a common problem in disorders of the upper extremities. During arm motion, the scapula acts as a dynamic base for the humeral head. To safely move the shoulder with an exoskeleton for the upper extremities a textile orthosis was developed that stabilizes the scapula against the thorax. The support level of the orthosis is continuously manually adjustable. To test the feasibility of our design and to improve the functionality of the textile orthosis, it needs to be investigated how the orthosis acts on people affected by shoulder instability. The investigators seek to explore how people with shoulder instability respond to the orthosis, and how they may benefit from the orthosis function. Therefore, the range of motion of arm elevation will be compared in different conditions: (i) without any support, (ii) with the support of a trained therapist, and (iii) when the device is engaged at the individual's optimal support level. Additionally, pilot tests will be performed to fix different parameters in our study protocol, such as the the optimal orthosis stiffness level and the ideal number of movement repetitions.


Clinical Trial Description

In this study, participants suffering from muscular weakness in the upper extremities, particularly the shoulder joint, will be recruited. A clear indicator for muscular weakness in the shoulder joint is a scapula alata (winging scapula). Hence, participants recruited for this study should present with a scapula alata and a limited RoM of at least one of their upper extremities. This study is designed as a cross-over trial. Each participant will take part in an experimental session that will last approximately 2 hours. At the beginning of the experiment, the participant will be informed about the measurement and sign the informed consent sheet. Additional demographic data and level of ability will be collected in a questionnaire. Before the measurements, participants will be fitted a textile scapula orthosis. The orthosis will be instrumented to quantify the amount of support the orthosis provides to the user. Therefore, an array of force sensors is mounted between the orthosis and the skin to measure the qualitative force distribution and its rate of change. To measure the absolute force applied to the plate, a load cell will be mounted on the orthosis fastening mechanism. All force data will be collected synchronously through a Micro-Controller board. The participants will be equipped with reflective adhesive markers to define the reference points for the range of motion measurements, which will be done with a goniometer and photographic opto-electronic motion tracking. Nine blocks of measurements will be conducted, lasting 5 minutes each. The remaining time in the study accounts for rest periods, the mounting and demounting of the orthosis, instructions and questionnaires. The first eight blocks will present the following treatment conditions in randomized order: - No support (NO): the scapula is not assisted during arm elevation. - Manual scapular assistance (SA): a trained person assists the scapula during arm elevation manually. - Orthosis support (OS): the scapula is assisted by the textile orthosis set to meaningfully different force levels. - Motor control task (MT): The participant reaches for a target placed at the maximum elevation height in the NO condition, once without and once with the orthosis. While one block each is performed in the NO, SA and MT conditions, six blocks are performed in the OS condition with the orthosis set to meaningfully different force levels. In each measurement set, participants will elevate their arms in one of two planes of horizontal rotation: - 30° (R30) as measured from the coronal body plane. - 80° (R80) as measured from the coronal body plane. During arm elevation, the arm is fully extended, i.e. the elbow and wrist are fully stretched. In this position, the center of mass has the largest lever arm and therefore the maximum torque due to gravity occurs in the shoulder. One measurement set will be done in each elevation plane. During the OS condition, the orthosis will be opened between measurement sets to allow for comfort and unhindered breathing and to guarantee independence of measurement data. After the experiment, the perceived exertion and orthosis comfort will be assessed using the Borg Scale and the Nordic Questionnaire. Before the study, several study parameters will be determined in pilot studies with variable duration, not exceeding 2 hours. The participants in the pilot studies and the final study might be identical. During the pilot tests, participants will wear an orthosis similar to the one used in the study. Hence, effort and strain for participants will be equal or less to the final study. The pilot tests include - Definition of optimal pressure and protocol to consistently find this pressure. - Definition of optimal orthosis configuration. - Definition of repeatability when orthosis is unmounted and mounted again. - Definition of meaningful difference between pressure levels. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04154098
Study type Interventional
Source Swiss Federal Institute of Technology
Contact
Status Completed
Phase N/A
Start date November 1, 2019
Completion date July 13, 2020

See also
  Status Clinical Trial Phase
Recruiting NCT05543980 - Leg Heat Therapy in Elderly Individuals Phase 2
Enrolling by invitation NCT03297632 - Improving Muscle Strength, Mass and Physical Function in Older Adults N/A
Completed NCT04207359 - Effects of Creatine Supplementation in Breast Cancer Survivors N/A
Completed NCT06216015 - Exercise Training and Kidney Transplantation N/A
Completed NCT04076982 - Effect of Supplementary Dietary Protein (21g Per Day) on Lean Mass and Strength in Sedentary, Adult Vegetarians N/A
Not yet recruiting NCT03662555 - Effect of Neuromuscular Electrical Stimulation Combined With Blood Flow Restriction on Muscular and Cardiovascular Function N/A
Completed NCT02530723 - Functional Changes and Power Training in Older Women. N/A
Completed NCT01704976 - SR-WBV Training for Frail Elderly in the Skilling up Stage N/A
Completed NCT01743495 - CAPABLE for Frail Dually Eligible Older Adults N/A
Completed NCT00183040 - HORMA: Hormonal Regulators of Muscle and Metabolism in Aging Phase 2
Enrolling by invitation NCT06432062 - Investigation the Effect of Rectus Abdominis and Erector Spinae Muscle Fatigue on the Viscoelastic Properties of Thoracolumbal Fascia
Recruiting NCT05073224 - Muscle Function After Childbirth N/A
Completed NCT04956705 - Vitamin D and Calcium Supplementation at Danish Nursing Homes N/A
Recruiting NCT03810768 - Metabolomics Study on Postoperative Intensive Care Acquired Muscle Weakness
Completed NCT00060970 - Evaluating Muscle Function After Ankle Surgery N/A
Completed NCT04546048 - The Early Strength Training Program in Post-transplant Liver Cases N/A
Completed NCT03628365 - Can Beta-Hydroxy-beta-Methylbutyrate Supplementation Counteract Muscle Catabolism in Critically Ill Patients? N/A
Completed NCT05056298 - Effect of Insole Added to Exercise in Patients With Bilateral Flexible Flatfoot N/A
Completed NCT02739464 - Effect of In-Patient Exercise Training on Length of Hospitalization in Burned Patients N/A
Completed NCT05497960 - Vivo Prediabetes Study: Online, Live, and Interactive Strength Training for Older Adults With Prediabetes N/A