Clinical Trials Logo

Muscular Atrophy clinical trials

View clinical trials related to Muscular Atrophy.

Filter by:

NCT ID: NCT05794139 Recruiting - Clinical trials for Spinal Muscular Atrophy

Safety and Efficacy of NMD670 in Ambulatory Adult Patients With Type 3 Spinal Muscular Atrophy

SYNAPSE-SMA
Start date: September 21, 2023
Phase: Phase 2
Study type: Interventional

The purpose of this study is to evaluate the efficacy, safety, tolerability and pharmacokinetics of NMD670 in the treatment of ambulatory adults with spinal muscular atrophy type 3

NCT ID: NCT05789758 Recruiting - Clinical trials for Muscular Atrophy, Spinal

A Study of Spinraza (Nusinersen) Exposure in Pregnant Women With Spinal Muscular Atrophy (SMA) Within Existing SMA Registries

Start date: December 15, 2023
Phase:
Study type: Observational [Patient Registry]

The primary objectives of the study are to prospectively evaluate pregnancy complications and outcomes in participants with SMA, birth outcomes and adverse effects in infants born to participants with SMA, who were exposed to nusinersen up to 14 months prior to the first day of their last menstrual period (LMP) before conception, 14.5 months before the date of conception, and/or at any time during their pregnancy. The secondary objective of the study is to evaluate pregnancy outcomes in participants with SMA exposed to nusinersen as compared with participants without SMA who were not exposed to nusinersen (e.g., participants from external, general population comparators).

NCT ID: NCT05779956 Recruiting - Clinical trials for Spinal Muscular Atrophy

Personalized Medicine for SMA: a Translational Project

Start date: September 1, 2021
Phase:
Study type: Observational

Major breakthroughs in the treatment for Spinal muscular atrophy (SMA) have been recently achieved with various therapeutic approaches that increase full-length SMN protein levels. The variability observed following the advent of commercial availability of Nusinersen for all types of SMA has highlighted the need to identify tools that may allow to predict possible therapeutic responses. The aim of this project is to establish whether an integrated approach using clinical, imaging (muscle MRI) and circulating biomarkers, can provide the possibility to develop a predictive model of therapeutic response to novel therapies for SMA patients. More specifically we wish to establish the correlation between clinical response, different biomarkers indicative of central nervous system efficacy (e.g. determination of neurofilaments levels), and markers that provide evidence of the skeletal muscle response (e.g. serum myostatin and muscle imaging) in different types of SMA

NCT ID: NCT05776862 Recruiting - Insulin Resistance Clinical Trials

Study Testing Benefits of Ursolic Acid (UA) as a Countermeasure To Myopenia and Insulin Resistance in Chronic Spinal Cord Injury (SCI)

Start date: March 27, 2023
Phase: Phase 2
Study type: Interventional

This study will evaluate if Ursolic Acid supplementation may be effective in reducing muscle loss and improving blood sugar control in the SCI community.

NCT ID: NCT05769465 Recruiting - Clinical trials for Spinal Muscular Atrophy

MAP THE SMA: a Machine-learning Based Algorithm to Predict THErapeutic Response in Spinal Muscular Atrophy

MAP_THE_SMA-01
Start date: April 1, 2023
Phase:
Study type: Observational

Spinal Muscular Atrophy (SMA) is caused by the homozygous loss of the Survival Motor Neuron (SMN) 1 gene, which leads to degeneration of spinal alpha-motor neurons and muscle atrophy. Three treatments have been approved for SMA but the available data show interpatient variability in therapy response and, to date, individual factors such as age or SMN2 copies,cannot fully explain this variance. The aim of this project is: - collect clinical data and patient-reported outcome measures (PROM) from patients treated with nusinersen, risdiplam, onasemnogene abeparvovec, - identify novel biomarkers and RNA molecular signature profiling, - develop a predictive algorithm using artificial intelligence (AI) methodologies based on machine learning (ML), able to integrate clinical outcomes, patients' characteristics, and specific biomarkers. This effort will help to better stratify the SMA patients and to predict their therapeutic outcome, thus to address patients towards personalized therapies.

NCT ID: NCT05768048 Recruiting - Clinical trials for Spinal Muscular Atrophy

Long Term Trajectories of SMA Patients Receiving or Not Disease-modifying Treatments

Start date: November 28, 2022
Phase:
Study type: Observational

This is an observational multicenter retrospective and prospective study on natural history of SMA also considering the 'new natural history' secondary to the availability of commercially available therapies. All the patients enrolled to date in the Italian registry, if not part of clinical trials, will be included in the present study.

NCT ID: NCT05765643 Recruiting - Muscular Atrophy Clinical Trials

Nurse Parental Support Using a Mobile App in Symptom Management for CMC

Start date: August 15, 2023
Phase: N/A
Study type: Interventional

Parents of children with medical complexity (CMC) are suffering from high level of stress. These CMC get multisystem diseases, including severe neurologic conditions or cancer, resulting in potential premature death. They experience one or more physical and psychological symptoms at one time, which seriously affect their quality of life and increase their health services utilization. Parents may lack confidence in their abilities when managing their child's symptoms. Literature suggested that increasing parental self-efficacy in managing their child's symptoms could improve child's health status. Home-based nursing services for the CMC and parents are available in Hong Kong. However, the service faces challenges because of serious nursing workforce shortage and the recent coronavirus pandemic. Nurse parental support in symptom management using a proactive mobile health App is an alternative method considered more feasible to continue home-based support for the CMC and parents. This proposed RCT will test the effects of a nurse-led mobile App for enhancing parental self-efficacy in symptom management for CMC. A repeated-measures, two-group design will be used to evaluate the effects between intervention and wait-listed control groups by comparing the study group receiving nurse support using a mobile App, and the wait-listed control group receiving usual community care for 96 randomly selected parents over a three-month follow-up. Primary outcome is parental self-efficacy. Secondary outcomes include children's symptom burden and health services utilization. These factors will be measured before intervention, immediately after intervention and three-month after intervention. The effectiveness of the intervention will be evaluated by comparing the primary outcome at three-month after intervention across the two study groups using ANCOVA with control for the pre-test value of parental self-efficacy. Generalized estimating equation will be used to address secondary objectives regarding the effectiveness of the mobile App as compared to the control on secondary outcomes from T1 to T3 with appropriate link function. It is hypothesized that nurse support using the mobile App is more effective than usual community care in enhancing parental self-efficacy in symptom management for their CMC at three-month after intervention.

NCT ID: NCT05761262 Recruiting - Clinical trials for Spinal Muscular Atrophy

SMN Circular RNAs as Potential Biomarkers for the Therapeutic Response to Nusinersen in Spinal Muscular Atrophy Patients

Start date: December 13, 2019
Phase:
Study type: Observational

The first cure for Spinal Muscular Atrophy (SMA; Nusinersen) has been approved by FDA in 2017. Although it improves the clinical picture of most SMA patients, not all exhibit the same response to treatment. In this project the aim will be: i. identifying cell-free SMN circular RNAs (circRNAs) in body fluids of SMA patients as potential biomarkers before and after Nusinersen; ii. evaluating their prognostic power as predictors of the clinical response of SMA patients to Nusinersen; iii. identifying human intronic polymorphisms that affect SMN circRNAs biogenesis and impact on the efficacy of Nusinersen. The results obtainable with this project will evaluate if different concentration of cell free SMN circRNAs in SMA patients could underlie the genotype-phenotype mismatch, usually observed, and the reduced response of a subset of SMA patients to therapy. Our research could highlight the need for these of combinatorial 'SMN-plus' and "personalized" therapies that account for individual differences.

NCT ID: NCT05760209 Recruiting - Clinical trials for Spinal Muscular Atrophy

SMN Circular RNAs as Potential New Targets and Biomarkers for SMA

CircSMA
Start date: July 22, 2021
Phase:
Study type: Observational

Spinal Muscular Atrophy (SMA) is a life-threatening disease in infancy that is caused by inactivating mutations in the Survival Motor Neuron 1 (SMN1) gene1,2. SMN1 mutations lead to deficiency in SMN protein, which results in degeneration of motor neurons in the spinal cord, progressive muscle weakness and atrophy. The almost identical SMN2 gene does not suffice SMN function, because skipping of exon 7 in its mRNA yields an unstable protein. Nevertheless, SMN2 represents a disease modifier gene and increasing its expression or rescuing its splicing defect have long been considered elective strategies for SMA1,2. After substantial translational research efforts, the first therapies eliciting clinical benefits for SMA patients have recently become available3. Nusinersen, an antisense oligonucleotide (ASO), and Risdiplasm, a small molecule, bind the SMN2 RNA and promote splicing of exon 7. On the other hand, Zolgesma, an adeno-associated virus delivering the SMN1 gene (scAAV9-SMN), bypasses the need to correct the splicing defect. Nevertheless, none of these therapies currently represents a complete cure for patients, because not all of them respond equally and in a significant portion of patients the symptoms are attenuated but not corrected3. It is believed that early treatment, possibly at a pre-symptomatic stage, would positively affect the clinical response and may significantly improve patient's management. However, another critical point is the current lack of information on the long-term efficacy and safety of the current treatments4. In this scenario, it is likely that further elucidation of the biological functions of the SMN genes and the identification of robust biomarkers for stratification of patients will set the ground for more "personalized" therapies, which may account for the clinical variability observed in patients and help improving the therapies in use.

NCT ID: NCT05755451 Recruiting - Clinical trials for Muscular Atrophy, Spinal

Natural History of SMA

iSMAR
Start date: June 21, 2018
Phase:
Study type: Observational [Patient Registry]

This is an investigator initiated observational study with the aim to record several aspects of function, care and adverse events in a large cohort of SMA patients followed longitudinally by using a structured academic disease registry.