Clinical Trials Logo

Muscle Wasting clinical trials

View clinical trials related to Muscle Wasting.

Filter by:

NCT ID: NCT04266015 Completed - Clinical trials for Head and Neck Neoplasms

Anabolic Effects of Intraoperative Feeding in Reconstruction Surgery

Start date: April 16, 2020
Phase: N/A
Study type: Interventional

Perioperative fasting remains a common clinical practice in surgical patients to prevent the development of postoperative anesthesia- and surgical-related complications. Clinical observational studies indicated that the combination catabolic effects resulted from prolonged perioperative fasting and profound surgical stress are likely to induce extensive protein catabolism, muscle breakdown and impaired glycemic control during postoperative phase, leading to the development of severe complications. Furthermore, prolonged gastrointestinal fasting is associated with microbial translocation that deteriorates the early recovery after surgery. This clinical trial anticipates in determining the beneficial effect of intraoperative feeding to improve intraoperative hemodynamics and enhance postoperative recovery due to attenuation of systemic catabolism and improvement of insulin sensitivity to glycemic control.

NCT ID: NCT03560713 Completed - Muscle Wasting Clinical Trials

Effects of Functional Electrical Stimulation in Patients Undergoing Coronary Artery Bypass Grafting Surgery

Start date: July 1, 2017
Phase: N/A
Study type: Interventional

Even with major advances in clinical therapy and percutaneous interventions, coronary artery bypass grafting (CABG) is the most common cardiac surgery performed worldwide and is an effective treatment in reducing symptoms and mortality in patients with coronary artery disease (CAD). However, CABG is a complex procedure that triggers a series of clinical and functional complications, such as series postoperative repercussions as muscle wasting in the first four hours after surgery. For quantification of changes in muscle structure and morphology ultrasonography has been used. In this context, cardiac rehabilitation program (CRP) is an essential component of care in CABG patients, because this intervention can prevent muscle weakness and wasting. Among different treatment modalities, functional electrical stimulation (FES) is a feasible therapy for neuromuscular activation and prevent muscle weakness and wasting in patients in phase I CRP, however the effect of this intervention in phase II CRP not been fully elucidated. The purpose of this study will to assess the effects of FES plus combined aerobic and resistance training on muscle thickness of quadriceps femoris, lower limbs muscle strength, functional capacity, QoL in in CABG patients enrolled in a phase II CR program.

NCT ID: NCT03026985 Completed - Critical Illness Clinical Trials

Acute Skeletal Muscle Wasting and Relation to Physical Function in Patients Requiring ECMO

Start date: January 25, 2017
Phase: N/A
Study type: Observational

The purpose of this study is to describe the changes in quadriceps muscle size and quality over the first 10 days on extracorporeal membrane oxygenation (ECMO) using ultrasound imaging. This study will also examine the relationship between those changes and muscle strength and level of physical function at day 10 and day 20 after ECMO commencement.

NCT ID: NCT02391103 Completed - Muscle Loss Clinical Trials

Effects of Neuromuscular Electrical Stimulation on Muscle Mass and Strength in Critically Ill Patients After Cardiothoracic Surgery

Catastim 2
Start date: May 2011
Phase: N/A
Study type: Interventional

The purposes of this study are 1) to determine whether neuromuscular electrical stimulation (NMES) is effective in preventing loss of muscle mass and strength and 2) to observe the time variation of MLT and strength from preoperative day to hospital discharge.

NCT ID: NCT02270502 Completed - Critical Illness Clinical Trials

Effects of Frailty, Sarcopenia and Muscle Wasting on Outcomes of Patients in the Surgical Intensive Care Unit

Start date: May 2014
Phase: N/A
Study type: Observational

The primary aim of the study is to evaluate consequences of frailty in critically ill patients. We hypothesize that a higher frailty index (based on published questionnaires) predicts a longer surgical intensive care unit and hospital length of stay, less ventilator-free days and a higher likelihood of an adverse discharge disposition. Our secondary aim is to identify muscle-size derived variables that can be used to predict frailty. We hypothesize that a low skeletal muscle mass measured by ultrasound can be used to quantify frailty, and to also predict the outcome of SICU patients, expressed as longer stay in the surgical intensive care unit and longer stay in the hospital, less ventilator-free days and a higher likelihood of an adverse discharge disposition. Our third aim is to examine potential triggers of muscle wasting in critically ill patients. Muscle wasting will be assessed by repetitive ultrasound measurements of muscle mass. We hypothesize that a significant decrease in skeletal muscle mass predicts longer stay at the surgical intensive care unit and longer hospital length of stay, less ventilator-free days and adverse discharge disposition.

NCT ID: NCT02057094 Completed - Weight Loss Clinical Trials

Effects of Protein Supplementation on Lean Body Mass Recovery From Extreme Military Training

Start date: January 2014
Phase: N/A
Study type: Interventional

The purpose of this study is to evaluate the physiological consequences of extreme military training and determine whether protein supplementation enhances recovery by promoting gains in lean body mass. This study will be conducted at the US Marine Survive, Evade, Resist, Escape (SERE) school at Camp Lejeune, North Carolina. SERE school may be an ideal setting to assess nutritional interventions that promote recovery from severe military operational stress, and identify innate or experiential variables that may lead to increased levels of resilience in Warfighters. Our laboratory has recently demonstrated the detrimental effects and stressful nature of SERE. Heart rates and stress-related hormones increased dramatically, with concomitant reductions in circulating anabolic hormones. Additionally, SERE causes significant weight loss (15-20 lbs), which probably included lean body mass. The effects of severe operational stress induced by SERE, particularly the loss of lean mass, may degrade physical performance, increase injury risk, and compromise military readiness. Under controlled laboratory conditions, consuming high protein diets or supplemental high-quality protein promotes muscle protein retention, enhances muscle protein synthesis, and protects lean body mass in response to stress. Whether consuming supplemental protein promotes lean mass recovery and physiological resilience following a 'real-world' military stress has not been determined. Further, the level of supplemental protein necessary to optimize recovery from extreme military operational stress has not been elucidated. Up to 90 US Marines will be enrolled in a 46-day double-blind, placebo-controlled trial. Using complex body composition measurements, kinetic modeling of human metabolism, blood sampling and cognitive and nutrition questionnaires, the consequences of SERE and the efficacy of protein recovery nutrition on lean mass accretion and Warfighter resilience will be assessed. We hypothesize that consuming a specially formulated, high-quality supplemental protein ration item will speed recovery of lean body mass, physiological, and psychological resilience following extreme military operational stress.

NCT ID: NCT01624792 Active, not recruiting - Clinical trials for Chronic Obstructive Pulmonary Disease

Eicosapentaenoic Acid and Protein Modulation to Induce Anabolism in Chronic Obstructive Pulmonary Disease (COPD): Aim 2

Start date: October 2011
Phase: N/A
Study type: Interventional

Loss of muscle protein is generally a central component of weight loss in Chronic Obstructive Pulmonary Disease (COPD) patients. Gains in muscle mass are difficult to achieve in COPD unless specific metabolic abnormalities are targeted. The investigators recently observed that alterations in protein metabolism are present in normal weight COPD patients. Elevated levels of protein synthesis and breakdown rates were found in this COPD group indicating that alterations are already present before muscle wasting occurs. The investigators recently observed that in order to enhance protein anabolism, manipulation of the composition of proteins and amino acids in nutrition is required in normal-weight COPD. Intake of casein protein resulted into significant protein anabolism in these patients. The anabolic response to casein protein was even higher than after whey protein intake. A substantial number of COPD patients, underweight as well as normal weight to obese, is characterized by an increased inflammatory response. This group failed to respond to nutritional therapy. Previous experimental research and clinical studies in cachectic conditions (mostly malignancy) indicate that polyunsaturated fatty acids (PUFA) are able to attenuate protein degradation by improving the anabolic response to feeding and by decreasing the acute phase response. Eicosapentaenoic acid (EPA) (in combination with docosahexaenoic acid (DHA)) has been shown to effectively inhibit weight loss in several disease states, however weight and muscle mass gain was not present or minimal. Until now, limited research has been done examining muscle protein metabolism and the response to EPA and DHA supplementation in patients with COPD. It is the investigator's hypothesis that supplementation of 2g/day EPA+DHA in COPD patients during 4 consecutive weeks will increase the muscle anabolic response to a high quality protein supplement as compared to a placebo, and supplementation of 3.5g/day EPA+DHA will increase the anabolic response even further. In the present study both the acute and chronic effects of EPA+DHA versus a placebo on muscle and whole body protein metabolism will be examined. The principal endpoint will be the extent of stimulation of net fractional muscle protein synthesis as this is the principal mechanism by which the effect of EPA+DHA on muscle anabolism can be measured. The endpoint will be assessed by isotope methodology which is thought to be the reference method.

NCT ID: NCT01372176 Completed - Critical Illness Clinical Trials

Early Goal-Directed Nutrition in ICU Patients - EAT-ICU Trial

EAT-ICU
Start date: June 2013
Phase: Phase 4
Study type: Interventional

An increasing number of patients survive critical illness and intensive care, but describe having impaired physical function several years after discharge as a consequence of extensive loss of muscle mass. Reasons for loss of muscle mass and physical function are multiple, but insufficient nutrition is likely to contribute. This randomised trial will investigate the effect of an optimised nutrition therapy during intensive care, on short term clinical outcome and physical quality of life. We hypothesise, that early nutritional therapy, directed towards patient-specific goals for energy and protein requirements, will improve both short- and long-term outcomes.

NCT ID: NCT01355497 Completed - Clinical trials for Non-Small Cell Lung Cancer

Effect of GTx-024 on Muscle Wasting in Patients With Non-Small Cell Lung Cancer (NSCLC) on First Line Platinum

Start date: July 2011
Phase: Phase 3
Study type: Interventional

The purpose of this study is to determine if the investigational drug GTx-024 can help patients with non small cell lung cancer increase physical function and maintain or gain muscle.

NCT ID: NCT01355484 Completed - Clinical trials for Non Small Cell Lung Cancer

Phase III Study of the Effect of GTx-024 on Muscle Wasting in Patients With Non-Small Cell Lung Cancer (NSCLC)

Start date: July 2011
Phase: Phase 3
Study type: Interventional

The purpose of this study is to determine if the investigational drug GTx-024 can help subjects with non-small cell lung cancer increase physical function and maintain or gain muscle, also called "lean body mass".