Clinical Trials Logo

Clinical Trial Summary

Lenalidomide has clinical activity in myeloma. The closely related compound, Pomalidomide, may have clinical activity in patients who have previously been treated with lenalidomide and who no longer respond to it. The mechanism of anti-tumor effects of these drugs has been attributed to several effects including anti-angiogenesis, immune activation, and anti-proliferative effects. Recent studies have suggested that these agents can mediate surprisingly rapid biologic effects on human monocytes and T cells. Our hypothesis is that the proximate effects of these drugs will be sensitive and quantitative surrogates of subsequent effects including activation of tumor antigen specific T cells as well as innate immune cells. Understanding the correlation between the pharmacodynamics of these effects with downstream activation using quantitative assays will facilitate the rational development of pomalidomide as immune-modulatory drug in diverse settings as well as its optimal development in myeloma therapy.


Clinical Trial Description

Multiple Myeloma (MM) is a common hematologic malignancy characterized by clonal expansion of transformed plasma cells (PCs) in the bone marrow1. Over the past decade, the introduction of immunomodulatory agents (such as thalidomide and lenalidomide) and proteasome inhibitors (such as bortezomib) as effective therapies has altered the therapeutic landscape for multiple myeloma (MM). Following the approval and establishment of thalidomide-containing regimens, such as melphalan, prednisone and thalidomide (MPT) and Thal/Dex, as the standard first-line therapy for newly diagnosed MM (NDMM), lenalidomide in combination with dexamethasone (RD) was approved for the treatment of patients with previously treated MM1. However, even with these newly approved agents, MM remains an incurable disease and most patients will eventually relapse and progress after multiple lines of different therapeutic regimens including both lenalidomide as well as bortezomib. Thus there remains a continued need to identify newer agents to maintain long term disease control in these patients.

Thalidomide and its immune-modulatory analogue lenalidomide have clinical activity in myeloma. Pomalidomide, a thalidomide analogue, is an immunomodulatory agent that displays similar anti-angiogenic activity, but far greater anti-proliferative and immunomodulatory activity, compared to the parent drug. Pomalidomide and lenalidomide have been shown to possess very similar pharmacological properties in vitro, including anti-angiogenic, immunomodulatory and anti-proliferative properties. However a unifying molecular mechanism for these diverse effects has been elusive. Pomalidomide and lenalidomide have significantly greater capacity for enhanced costimulation, leading to enhanced activation of innate and adaptive immune cells compared to Thalidomide. Recent studies have yielded the surprising finding that these agents can mediate rapid biologic effects on human monocytes and T cells in culture leading to activation of RhoA GTPases, and enhanced actin polymerization. Changes in actin cytoskeleton may also contribute to the capacity to these drugs to enhance the formation of immune synapses, Pomalidomide has also been shown to stimulate antibody-dependent cytotoxic T-cell activity (ADCC) in preclinical models.

At tolerated doses (MTD = 2 mg QD and 5 mg QOD), pomalidomide has been shown to be active in subjects with relapsed or refractory multiple myeloma (MM) (study CC-4047-00-001). In 45 subjects who received doses of pomalidomide ranging, by cohort, up to 10 mg daily, the most commonly occurring dose-limiting toxicity (DLT) was reversible neutropenia. As with other IMiDs administered to subjects receiving concomitant systemic steroids, deep vein thrombosis (DVT) was seen (in 1 subject each in this study and in its subsequent named patient supply rollover program).

Recently, preliminary efficacy and safety data from an ongoing phase II study, led by Martha Lacy at Mayo Clinic, were published. Sixty patients with relapsed or refractory multiple myeloma were enrolled. Pomalidomide (CC-4047) was given orally at a dose of 2 mg daily on days 1-28 of a 28-day cycle and dexamethasone was given orally at a dose of 40 mg daily on days 1, 8, 15, 22 of each cycle. Patient also received aspirin 325 mg once daily for thromboprophylaxis. The study endpoints were the response rate in patients taking pomalidomide plus dexamethasone including patients with lenalidomide resistant refractory multiple myeloma, and safety of pomalidomide plus dexamethasone. Responses were recorded using the criteria of the International Myeloma Working Group. Thirty eight patients achieved objective response (63%) including CR in 3 patients (5%), VGPR in 17 patients (28%), and PR in 18 patients (30%). The CR + VGPR rate was 33%. Grade 3 or 4 hematologic toxicity occurred in 23 patients (38%) and consisted of anemia in three patients (5%), thrombocytopenia in two patients (3%) and neutropenia in 21 (35%). Among those that developed grade 3/4 neutropenia, all first experienced the neutropenia in cycle 1-3; no new patients experienced grade 3/4 neutropenia in cycle 4 or later. The most common non-hematological grade 3/4 toxicities were fatigue (17%) and pneumonia (8%). Other grade 3/4 non-hematological toxicities that occurred in less than 5% included diarrhea, constipation, hyperglycemia, and neuropathy. One patient (1.6%) had a thromboembolic event of deep vein thrombosis.

Another dosing regimen for Pomalidomide involved 21/28 day dosing, as in the current dosing regimen for Lenalidomide. In this trial the recommended dose for phase II testing was determined to be 4 mg, 21/28 d. Clinical response (greater than or equal to a partial response (PR)) was observed in 7/25 (28%) patients. While both regimens seem to be clinically active, it is unclear at present as to which regimen leads to greater immune activation or clinical activity.

In addition to MM, pre-clinical data and the prior experience with thalidomide and lenalidomide in the treatment of patients with myelofibrosis with myeloid metaplasia (MMM) provided the rationale for the use of pomalidomide in patients with MMM. This is further supported by the results of a Celgene sponsored trial (MMM-001) which indicated that pomalidomide therapy at 0.5 mg or 2 mg/day +/- an abbreviated course of prednisone is well tolerated in patients with myelofibrosis and active in the treatment of anemia.

However, these studies did not monitor proximate pharmacodynamic events (such as might occur within hours of drug exposure), and link these to downstream effects, including clinical activity and toxicity. Our hypothesis is that the proximate effects of these drugs (including drug induced changes in F-actin) and early phosphorylation events will be sensitive and quantitative surrogates of subsequent effects including activation of tumor antigen specific T cells as well as innate immune cells. Understanding the correlation between pharmacodynamics of these effects with downstream activation using quantitative assays will facilitate rational development of these agents as immunomodulatory drugs in diverse settings and may also allow optimization of drug delivery to both reduce potential toxicity, and enhance efficacy. ;


Study Design

Allocation: Randomized, Endpoint Classification: Efficacy Study, Intervention Model: Parallel Assignment, Masking: Open Label, Primary Purpose: Treatment


Related Conditions & MeSH terms


NCT number NCT01319422
Study type Interventional
Source Yale University
Contact
Status Completed
Phase Phase 2
Start date June 2011
Completion date November 2014

See also
  Status Clinical Trial Phase
Recruiting NCT05027594 - Ph I Study in Adult Patients With Relapsed or Refractory Multiple Myeloma Phase 1
Completed NCT02412878 - Once-weekly Versus Twice-weekly Carfilzomib in Combination With Dexamethasone in Adults With Relapsed and Refractory Multiple Myeloma Phase 3
Completed NCT01947140 - Pralatrexate + Romidepsin in Relapsed/Refractory Lymphoid Malignancies Phase 1/Phase 2
Recruiting NCT05971056 - Providing Cancer Care Closer to Home for Patients With Multiple Myeloma N/A
Recruiting NCT05243797 - Phase 3 Study of Teclistamab in Combination With Lenalidomide and Teclistamab Alone Versus Lenalidomide Alone in Participants With Newly Diagnosed Multiple Myeloma as Maintenance Therapy Following Autologous Stem Cell Transplantation Phase 3
Active, not recruiting NCT04555551 - MCARH109 Chimeric Antigen Receptor (CAR) Modified T Cells for the Treatment of Multiple Myeloma Phase 1
Recruiting NCT05618041 - The Safety and Efficay Investigation of CAR-T Cell Therapy for Patients With Hematological Malignancies N/A
Active, not recruiting NCT03844048 - An Extension Study of Venetoclax for Subjects Who Have Completed a Prior Venetoclax Clinical Trial Phase 3
Recruiting NCT03412877 - Administration of Autologous T-Cells Genetically Engineered to Express T-Cell Receptors Reactive Against Neoantigens in People With Metastatic Cancer Phase 2
Completed NCT02916979 - Myeloid-Derived Suppressor Cells and Checkpoint Immune Regulators' Expression in Allogeneic SCT Using FluBuATG Phase 1
Recruiting NCT03570983 - A Trial Comparing Single Agent Melphalan to Carmustine, Etoposide, Cytarabine, and Melphalan (BEAM) as a Preparative Regimen for Patients With Multiple Myeloma Undergoing High Dose Therapy Followed by Autologous Stem Cell Reinfusion Phase 2
Terminated NCT03399448 - NY-ESO-1-redirected CRISPR (TCRendo and PD1) Edited T Cells (NYCE T Cells) Phase 1
Completed NCT03665155 - First-in- Human Imaging of Multiple Myeloma Using 89Zr-DFO-daratumumab, a CD38-targeting Monoclonal Antibody Phase 1/Phase 2
Completed NCT02812706 - Isatuximab Single Agent Study in Japanese Relapsed AND Refractory Multiple Myeloma Patients Phase 1/Phase 2
Active, not recruiting NCT05024045 - Study of Oral LOXO-338 in Patients With Advanced Blood Cancers Phase 1
Active, not recruiting NCT03989414 - A Study to Determine the Recommended Dose and Regimen and to Evaluate the Safety and Preliminary Efficacy of CC-92480 in Combination With Standard Treatments in Participants With Relapsed or Refractory Multiple Myeloma (RRMM) and Newly Diagnosed Multiple Myeloma (NDMM) Phase 1/Phase 2
Active, not recruiting NCT03792763 - Denosumab for High Risk SMM and SLiM CRAB Positive, Early Myeloma Patients Phase 2
Withdrawn NCT03608501 - A Study of Ixazomib, Thalidomide and Dexamethasone in Newly Diagnosed and Treatment-naive Multiple Myeloma (MM) Participants Non-eligible for Autologous Stem-cell Transplantation Phase 2
Recruiting NCT04537442 - Clinical Study to Evaluate the Safety and Efficacy of IM21 CAR-T Cells in the Treatment of Elderly Patients With Relapsed or Refractory Multiple Myeloma Phase 1
Completed NCT02546167 - CART-BCMA Cells for Multiple Myeloma Phase 1