Multiple Myeloma Clinical Trial
Official title:
Evaluation of a Method Designed to Improve Outcome of HD Chemotherapy and AHSCT for Patients With Myeloma: Total Marrow Irradiation Administered Via Helical Tomotherapy Plus High-Dose Melphalan and Amifostine Before AHSCT2
The purpose of this study is to improve the efficacy of the HDC regimen by adding a novel,
"targeted" means administering a variation of total body irradiation (TBI) radiation i.e.,
total skeletal irradiation (TSI) administered by helical tomotherapy (HT) before, and in
addition to the current standard of HDC, at a dose of 200 mg/m2 (HDMel200). The underlying
postulate of this endeavor is that TSI-HT will provide additional cytoreduction to HDMel
alone, without producing additional (serious) toxicity. We will utilize a classical Phase I
study design (i.e., dose escalation) in myeloma patients undergoing AHSCT2 to define a
maximum tolerated dose (MTD) and dose limiting toxicity (DLT). Finally, although comparisons
to other therapies are not typical (and/or feasible) for a Phase I study, we will compare,
whenever possible, both the toxicity and the antimyeloma activity of the AHSCT2 to AHSCT1.
This protocol will standardize, as much as possible the use of AHSCT2 both as a "tandem" and
"salvage" procedure. Since sufficient AHSC (CD34+ cells) are routinely collected in adequate
numbers for multiple AHSCTs, but recently used infrequently, it is important to work towards
defining the optimal utilization of this resource.
While HDC/AHSCT is active most patients eventually relapse; obviously, those with lesser
responses progress as well. Many investigators regard HDC/AHSCT as a "mature" modality a
useful if fixed element in an evolving treatment paradigm that focuses on the introduction
of new (non-HDC/AHSCT) agents with unique mechanisms of action. However, data from several
related sources (including both the syngeneic and second ["tandem" or salvage] AHSCT
experience), suggests that the efficacy of HDC/AHSCT could be improved by obtaining better
cytoreduction of the HDC component, thus prolonging survival and possibly even producing an
increase in cures. However, to do so will require additional attention to the sources of
relapse following HDC/AHSCT, mainly the residual myeloma in the patient, but perhaps also
the inadvertent reinfusion of clonogenic myeloma cells in the AHSCT. For reasons discussed
herein, this study will focus on the former.
We believe that the agents with more potent activity vs. the (multiple) myeloma cancer stem
cell (MM-CSC) and/or their microenvironment are ultimately needed to increase the cure rate
in myeloma. Unfortunately, preliminary data suggest current modalities used in myeloma
therapy are only variably effective vs. these targets, and that newer agents with such
activity are only now becoming available for clinical trials.
The use of these newer agents are most likely to augment, not supplant, current modalities,
lending even more urgency to optimizing existing elements to try to improve the efficacy of
HDC/AHSCT and especially to determine if activity vs. MM-CSC and/or the microenvironment of
these current modalities can be augmented. Radiation seems especially attractive to
re-evaluate, given new, "targeted" methods of administration such as those described herein.
Impetus for this effort comes from the known radiosensitivity of clonogenic myeloma cells (a
population that at least may contain MM-CSC), and especially given the ability of local
radiotherapy to provide local disease control in myeloma, and especially given the ability
of local radiotherapy to cure some patients with solitary plasmacytoma "proving" activity of
radiotherapy vs. MM-CSC in this closely-related diagnosis.
It is important to note that improvement in current modalities may offer better clinical
outcomes even if major effects vs. the MM-CSC and microenvironment interaction are not
produced. We do not currently have the ability to measure such effects; this will not be
part of this trial.
;
Endpoint Classification: Safety/Efficacy Study, Intervention Model: Single Group Assignment, Masking: Open Label, Primary Purpose: Treatment
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05027594 -
Ph I Study in Adult Patients With Relapsed or Refractory Multiple Myeloma
|
Phase 1 | |
Completed |
NCT02412878 -
Once-weekly Versus Twice-weekly Carfilzomib in Combination With Dexamethasone in Adults With Relapsed and Refractory Multiple Myeloma
|
Phase 3 | |
Completed |
NCT01947140 -
Pralatrexate + Romidepsin in Relapsed/Refractory Lymphoid Malignancies
|
Phase 1/Phase 2 | |
Recruiting |
NCT05971056 -
Providing Cancer Care Closer to Home for Patients With Multiple Myeloma
|
N/A | |
Recruiting |
NCT05243797 -
Phase 3 Study of Teclistamab in Combination With Lenalidomide and Teclistamab Alone Versus Lenalidomide Alone in Participants With Newly Diagnosed Multiple Myeloma as Maintenance Therapy Following Autologous Stem Cell Transplantation
|
Phase 3 | |
Active, not recruiting |
NCT04555551 -
MCARH109 Chimeric Antigen Receptor (CAR) Modified T Cells for the Treatment of Multiple Myeloma
|
Phase 1 | |
Recruiting |
NCT05618041 -
The Safety and Efficay Investigation of CAR-T Cell Therapy for Patients With Hematological Malignancies
|
N/A | |
Active, not recruiting |
NCT03844048 -
An Extension Study of Venetoclax for Subjects Who Have Completed a Prior Venetoclax Clinical Trial
|
Phase 3 | |
Recruiting |
NCT03412877 -
Administration of Autologous T-Cells Genetically Engineered to Express T-Cell Receptors Reactive Against Neoantigens in People With Metastatic Cancer
|
Phase 2 | |
Completed |
NCT02916979 -
Myeloid-Derived Suppressor Cells and Checkpoint Immune Regulators' Expression in Allogeneic SCT Using FluBuATG
|
Phase 1 | |
Recruiting |
NCT03570983 -
A Trial Comparing Single Agent Melphalan to Carmustine, Etoposide, Cytarabine, and Melphalan (BEAM) as a Preparative Regimen for Patients With Multiple Myeloma Undergoing High Dose Therapy Followed by Autologous Stem Cell Reinfusion
|
Phase 2 | |
Completed |
NCT03665155 -
First-in- Human Imaging of Multiple Myeloma Using 89Zr-DFO-daratumumab, a CD38-targeting Monoclonal Antibody
|
Phase 1/Phase 2 | |
Terminated |
NCT03399448 -
NY-ESO-1-redirected CRISPR (TCRendo and PD1) Edited T Cells (NYCE T Cells)
|
Phase 1 | |
Completed |
NCT02812706 -
Isatuximab Single Agent Study in Japanese Relapsed AND Refractory Multiple Myeloma Patients
|
Phase 1/Phase 2 | |
Active, not recruiting |
NCT05024045 -
Study of Oral LOXO-338 in Patients With Advanced Blood Cancers
|
Phase 1 | |
Active, not recruiting |
NCT03989414 -
A Study to Determine the Recommended Dose and Regimen and to Evaluate the Safety and Preliminary Efficacy of CC-92480 in Combination With Standard Treatments in Participants With Relapsed or Refractory Multiple Myeloma (RRMM) and Newly Diagnosed Multiple Myeloma (NDMM)
|
Phase 1/Phase 2 | |
Active, not recruiting |
NCT03792763 -
Denosumab for High Risk SMM and SLiM CRAB Positive, Early Myeloma Patients
|
Phase 2 | |
Withdrawn |
NCT03608501 -
A Study of Ixazomib, Thalidomide and Dexamethasone in Newly Diagnosed and Treatment-naive Multiple Myeloma (MM) Participants Non-eligible for Autologous Stem-cell Transplantation
|
Phase 2 | |
Recruiting |
NCT04537442 -
Clinical Study to Evaluate the Safety and Efficacy of IM21 CAR-T Cells in the Treatment of Elderly Patients With Relapsed or Refractory Multiple Myeloma
|
Phase 1 | |
Completed |
NCT02546167 -
CART-BCMA Cells for Multiple Myeloma
|
Phase 1 |