Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT06080581
Other study ID # MITO-DYS-IR
Secondary ID
Status Recruiting
Phase
First received
Last updated
Start date October 20, 2023
Est. completion date December 2025

Study information

Verified date November 2023
Source Rigshospitalet, Denmark
Contact Matteo Fiorenza, Ph.D.
Phone +4535458748
Email matteo.fiorenza@regionh.dk
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

The overarching aim of this observational study is to characterize muscle mitochondrial defects in individuals harboring pathogenic mitochondrial DNA (mtDNA) mutations associated with an insulin-resistant phenotype. In a case-control design, individuals with pathogenic mtDNA mutations will be compared to controls matched for sex, age, and physical activity level. Participants will attend a screening visit and two experimental trials including: - An oral glucose tolerance test - A hyperinsulinemic-euglycemic clamp combined with measurements of femoral artery blood flow and arteriovenous difference of glucose - Muscle biopsy samples


Description:

Background: Peripheral insulin resistance is a major risk factor for metabolic diseases such as type 2 diabetes. Skeletal muscle accounts for the majority of insulin-stimulated glucose disposal, hence restoring insulin action in skeletal muscle is key in the prevention of type 2 diabetes. Mitochondrial dysfunction is implicated in the etiology of muscle insulin resistance. Also, as mitochondrial function is determined by its proteome quantity and quality, alterations in the muscle mitochondrial proteome may play a critical role in the pathophysiology of insulin resistance. However, insulin resistance is multifactorial in nature and whether mitochondrial derangements are a cause or a consequence of impaired insulin action is unclear. In recent years, the study of humans with genetic mutations has shown enormous potential to establish the mechanistic link between two physiological variables; indeed, if the mutation has a functional impact on one of those variables, then the direction of causality can be readily ascribed. Mitochondrial myopathies are genetic disorders of the mitochondrial respiratory chain affecting predominantly skeletal muscle. Mitochondrial myopathies are caused by pathogenic mutations in either nuclear or mitochondrial DNA (mtDNA), which ultimately lead to mitochondrial dysfunction. Although the prevalence of mtDNA mutations is just 1 in 5,000, the study of patients with mtDNA defects has the potential to provide unique information on the pathogenic role of mitochondrial derangements that is disproportionate to the rarity of affected individuals. The m.3243A>G mutation in the MT-TL1 gene encoding the mitochondrial leucyl-tRNA 1 gene is the most common mutation leading to mitochondrial myopathy in humans. The m.3243A>G mutation is associated with impaired glucose tolerance and insulin resistance in skeletal muscle. Most importantly, insulin resistance precedes impairments of β-cell function in carriers of the m.3243A>G mutation, making these patients an ideal human model to study the causative nexus between muscle mitochondrial dysfunction and insulin resistance. Thus, a comprehensive characterization of mitochondrial functional defects and the associated proteome alterations in patients harboring a mtDNA mutation associated with an insulin-resistant phenotype may elucidate the causal nexus between mitochondrial derangements and insulin resistance. Also, as mitochondrial dysfunction exhibits many faces (e.g. reduced oxygen consumption rate, impaired ATP synthesis, overproduction of reactive oxygen species, altered membrane potential), such an approach may clarify which features of mitochondrial dysfunction play a prominent role in the pathogenesis of insulin resistance. Objective: To characterize muscle mitochondrial defects in individuals harboring pathogenic mitochondrial DNA (mtDNA) mutations associated with an insulin-resistant phenotype. Study design: Case-control study in individuals with pathogenic mtDNA mutations (n=15) and healthy controls (n=15) matched for sex, age, and physical activity level. Endpoint: Differences between individuals with pathogenic mtDNA mutations and controls.


Recruitment information / eligibility

Status Recruiting
Enrollment 30
Est. completion date December 2025
Est. primary completion date December 2025
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 18 Years and older
Eligibility Eligibility criteria for individuals with pathogenic mtDNA mutations Inclusion criteria: - Known m.3243A>G mutation in the MT-TL1 gene encoding the mitochondrial leucyl-tRNA 1 gene - Other known mtDNA point mutations Exclusion criteria: - Use of antiarrhythmic medications or other medications which, in the opinion of the investigators, have the potential to affect outcome measures. - Diagnosed severe heart disease, dysregulated thyroid gland conditions, or other dysregulated endocrinopathies, or other conditions which, in the opinion of the investigators, have the potential to affect outcome measures. - Pregnancy Eligibility criteria for controls Exclusion criteria: - Current and regular use of antidiabetic medications or other medications which, in the opinion of the investigators, have the potential to affect outcome measures. - Diagnosed heart disease, symptomatic asthma, liver cirrhosis or -failure, chronic kidney disease, dysregulated thyroid gland conditions or other dysregulated endocrinopathies, or other conditions which, in the opinion of the investigators, have the potential to affect outcome measures - Daily use of tobacco products - Excessive alcohol consumption - Pregnancy

Study Design


Locations

Country Name City State
Denmark Rigshospitalet Copenhagen

Sponsors (2)

Lead Sponsor Collaborator
Rigshospitalet, Denmark University of Copenhagen

Country where clinical trial is conducted

Denmark, 

References & Publications (15)

DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991 Mar;14(3):173-94. doi: 10.2337/diacare.14.3.173. — View Citation

DeFronzo RA, Gunnarsson R, Bjorkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest. 1985 Jul;76(1):149-55. doi: 10.1172/JCI111938. — View Citation

DeFronzo RA, Simonson D, Ferrannini E. Hepatic and peripheral insulin resistance: a common feature of type 2 (non-insulin-dependent) and type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1982 Oct;23(4):313-9. doi: 10.1007/BF00253736. — View Citation

Diaz-Vegas A, Sanchez-Aguilera P, Krycer JR, Morales PE, Monsalves-Alvarez M, Cifuentes M, Rothermel BA, Lavandero S. Is Mitochondrial Dysfunction a Common Root of Noncommunicable Chronic Diseases? Endocr Rev. 2020 Jun 1;41(3):bnaa005. doi: 10.1210/endrev/bnaa005. — View Citation

DiMauro S. Mitochondrial myopathies. Curr Opin Rheumatol. 2006 Nov;18(6):636-41. doi: 10.1097/01.bor.0000245729.17759.f2. — View Citation

Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF. Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet. 2008 Aug;83(2):254-60. doi: 10.1016/j.ajhg.2008.07.004. — View Citation

Frederiksen AL, Jeppesen TD, Vissing J, Schwartz M, Kyvik KO, Schmitz O, Poulsen PL, Andersen PH. High prevalence of impaired glucose homeostasis and myopathy in asymptomatic and oligosymptomatic 3243A>G mitochondrial DNA mutation-positive subjects. J Clin Endocrinol Metab. 2009 Aug;94(8):2872-9. doi: 10.1210/jc.2009-0235. Epub 2009 May 26. — View Citation

Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL, Alston CL, Feeney C, Horvath R, Yu-Wai-Man P, Chinnery PF, Taylor RW, Turnbull DM, McFarland R. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol. 2015 May;77(5):753-9. doi: 10.1002/ana.24362. Epub 2015 Mar 28. — View Citation

Hesselink MK, Schrauwen-Hinderling V, Schrauwen P. Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat Rev Endocrinol. 2016 Nov;12(11):633-645. doi: 10.1038/nrendo.2016.104. Epub 2016 Jul 22. — View Citation

Lindroos MM, Majamaa K, Tura A, Mari A, Kalliokoski KK, Taittonen MT, Iozzo P, Nuutila P. m.3243A>G mutation in mitochondrial DNA leads to decreased insulin sensitivity in skeletal muscle and to progressive beta-cell dysfunction. Diabetes. 2009 Mar;58(3):543-9. doi: 10.2337/db08-0981. Epub 2008 Dec 10. — View Citation

O'Rahilly S. "Treasure Your Exceptions"-Studying Human Extreme Phenotypes to Illuminate Metabolic Health and Disease: The 2019 Banting Medal for Scientific Achievement Lecture. Diabetes. 2021 Jan;70(1):29-38. doi: 10.2337/dbi19-0037. — View Citation

Parish R, Petersen KF. Mitochondrial dysfunction and type 2 diabetes. Curr Diab Rep. 2005 Jun;5(3):177-83. doi: 10.1007/s11892-005-0006-3. — View Citation

Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev. 2018 Oct 1;98(4):2133-2223. doi: 10.1152/physrev.00063.2017. — View Citation

Saleheen D, Natarajan P, Armean IM, Zhao W, Rasheed A, Khetarpal SA, Won HH, Karczewski KJ, O'Donnell-Luria AH, Samocha KE, Weisburd B, Gupta N, Zaidi M, Samuel M, Imran A, Abbas S, Majeed F, Ishaq M, Akhtar S, Trindade K, Mucksavage M, Qamar N, Zaman KS, Yaqoob Z, Saghir T, Rizvi SNH, Memon A, Hayyat Mallick N, Ishaq M, Rasheed SZ, Memon FU, Mahmood K, Ahmed N, Do R, Krauss RM, MacArthur DG, Gabriel S, Lander ES, Daly MJ, Frossard P, Danesh J, Rader DJ, Kathiresan S. Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity. Nature. 2017 Apr 12;544(7649):235-239. doi: 10.1038/nature22034. — View Citation

Zabielski P, Lanza IR, Gopala S, Heppelmann CJ, Bergen HR 3rd, Dasari S, Nair KS. Altered Skeletal Muscle Mitochondrial Proteome As the Basis of Disruption of Mitochondrial Function in Diabetic Mice. Diabetes. 2016 Mar;65(3):561-73. doi: 10.2337/db15-0823. Epub 2015 Dec 30. — View Citation

* Note: There are 15 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Other Body composition Whole-body fat free mass and fat mass are determined by dual-energy X-ray absorptiometry Baseline
Other Leg muscle mass Leg muscle mass is determined by dual-energy X-ray absorptiometry Baseline
Other Physical activity level Physical activity is measured by wrist-worn accelerometers Baseline
Other Self-reported physical activity Self-reported physical activity is measured by the International Physical Activity Questionnaire - Short Form (IPAQ-SF) Baseline
Other Cardiorespiratory fitness Pulmonary maximal oxygen uptake (VO2max) is determined during an incremental exercise test to exhaustion Baseline
Primary Skeletal muscle insulin sensitivity Insulin-stimulated muscle glucose uptake is determined by the hyperinsulinemic-euglycemic clamp method integrated with measurements of femoral artery blood flow and arteriovenous difference of glucose 90-150 minutes after initiation of the hyperinsulinemic euglycemic clamp
Primary Whole-body insulin sensitivity Whole-body insulin sensitivity is determined by the hyperinsulinemic-euglycemic clamp method 90-150 minutes after initiation of the hyperinsulinemic euglycemic clamp
Primary Muscle mitochondrial respiration Mitochondrial O2 flux is measured by high-resolution respirometry in permeabilized fibers from muscle biopsy samples Baseline
Primary Muscle mitochondrial reactive oxygen species (ROS) production Mitochondrial H2O2 emission rates are measured by high-resolution fluorometry in permeabilized fibers from muscle biopsy samples Baseline
Primary Muscle mitochondrial proteome Mitochondrial proteome signatures are determined by mass spectrometry-based proteomics in muscle biopsy samples Baseline
Secondary Glucose tolerance Glucose tolerance is determined by the plasma glucose response curve measured during an oral glucose tolerance test 0-180 minutes after ingestion of an oral glucose solution
Secondary Beta cell function Beta cell function is determined by measurements of plasma insulin and insulin C-peptide during an oral glucose tolerance test 0-180 minutes after ingestion of an oral glucose solution
Secondary Muscle mtDNA heteroplasmy mtDNA mutation load is measured in muscle biopsy samples from the patients with mitochondrial myopathy Baseline
Secondary Muscle insulin signaling Insulin-mediated changes in the abundance of (phosphorylated) proteins modulating insulin action are measured by immunoblotting in muscle and fat biopsy samples Before (baseline) and 0-150 minutes after initiation of a hyperinsulinemic-euglycemic clamp
Secondary Muscle integrated stress response signaling proteins Abundance of (phosphorylated) proteins modulating the integrated stress response pathway is measured by immunoblotting in muscle biopsy samples. Baseline
Secondary Muscle integrated stress response genes mRNA content of genes governing the integrated stress response pathway is measured by Real-Time PCR in muscle biopsy samples. Baseline
Secondary Muscle release of FGF21 and GDF15 Skeletal muscle production of FGF21 and GDF15 is determined by measurements of femoral artery blood flow and arteriovenous difference of plasma FGF21 and GDF15 Before (baseline) and 0-150 minutes after initiation of a hyperinsulinemic-euglycemic clamp
See also
  Status Clinical Trial Phase
Completed NCT03388528 - Low Residue Diet Study in Mitochondrial Disease N/A
Completed NCT04378075 - A Study to Evaluate Efficacy and Safety of Vatiquinone for Treating Mitochondrial Disease in Participants With Refractory Epilepsy Phase 2/Phase 3
Completed NCT03678740 - Diagnostic Odyssey Survey 2
Recruiting NCT06051448 - Promoting Resilience in Stress Management (PRISM) and Clinical-focused Narrative (CFN) Pilot in Adults With Primary Mitochondrial Disease (PMD). Phase 1/Phase 2
Completed NCT02909400 - The KHENERGY Study Phase 2
Completed NCT02398201 - A Study of Bezafibrate in Mitochondrial Myopathy Phase 2
Completed NCT03857880 - Identification of New Candidate Genes in Patients With Mitochondrial Disease by High Resolution Chromosome Analysis on DNA Chip
Not yet recruiting NCT06450964 - Establishment of Reproductive Cohort and Prediction Model of Genetic Counseling for Mitochondrial Genetic Diseases
Completed NCT04165239 - The KHENERGYZE Study Phase 2
Completed NCT02284334 - Glycemic Index in Mitochondrial Disease
Recruiting NCT06080568 - Human Mitochondrial Stress-driven Obesity Resistance
Recruiting NCT04802707 - Deoxynucleosides Pyrimidines as Treatment for Mitochondrial Depletion Syndrome Phase 2
Completed NCT04594590 - Natural History Study of SLC25A46 Mutation-related Mitochondriopathy
Completed NCT04580979 - Natural History Study of FDXR Mutation-related Mitochondriopathy
Withdrawn NCT03866954 - Trial of Erythrocyte Encapsulated Thymidine Phosphorylase In Mitochondrial Neurogastrointestinal Encephalomyopathy Phase 2
Recruiting NCT04113447 - Mitochondrial Donation: An 18 Month Outcome Study.
Enrolling by invitation NCT04734626 - CrCest Study in Primary Mitochondrial Disease
Completed NCT03832218 - Executive Function Disorders and Anxio-depressive Symptomatology in Children and Adolescents With Mitochondrial Pathologies N/A
Terminated NCT02473445 - A Long-term Extension of Study RP103-MITO-001 (NCT02023866) to Assess Cysteamine Bitartrate Delayed-release Capsules (RP103) in Children With Inherited Mitochondrial Disease Phase 2
Completed NCT05012358 - Genomic Profiling of Mitochondrial Disease - Imaging Analysis for Precise Mitochondrial Medicine