Mild Hypertension Clinical Trial
— AIR PRESSUREOfficial title:
Reducing AIR Pollution Exposure to Lower Blood PRESSURE
Fine particulate matter <2.5 μm (PM2.5) air pollution is the fifth leading risk factor for global mortality. Mitigating the clinically significant blood pressure (BP) elevation from air pollution by reducing PM2.5 exposure will likely contribute to the reduction in cardiovascular disease-related mortality. Twin epidemics of air pollution and high BP converge in underserved urban communities (i.e., Detroit) and warrant immediate attention. Prior studies with short duration (a few days) showed indoor portable air cleaners (PACs) are a novel approach to reduce the health burden of both high BP and PM2.5. Trials over several weeks employing remote technologies with a large sample size of patients residing in their own homes in vulnerable urban communities are needed to demonstrate if the BP-reduction from PAC usage is sustainable in real-world settings. The investigators' specific aims are to 1) determine if compared to sham, active PAC use during 3 weeks can provide sustained reductions in home BP levels by reducing personal-level PM2.5 air pollution exposures in patients with mild high BP residing in vulnerable disadvantaged communities across Detroit and 2) explore clinical markers (e.g., age, sex, body mass index) that predict BP-responses to PAC intervention to better target at-risk populations in larger-scale trials and future real-world clinical settings. A randomized, double-blind, sham-controlled parallel limb trial of overnight bedroom PAC use versus sham with 200 Detroit community individuals with mild high BP will be conducted. Continuous bedroom PM2.5 levels and home BP will be measured throughout 28 days. PAC will be used in the bedroom before bedtime on the 7th day continuously for 21 days. The reduction of systolic BP (SBP) will be calculated for both the intervention and control groups and the significance will be compared using mixed-effects modeling with repeated measurements of SBP as the dependent variable and group (active vs sham PAC use) as the independent variable with a fixed-effect. Linear multiple regression modeling with SBP as the dependent variable and participant-level characteristics including body mass index, waist circumference, race, ethnicity, or sex as predictors will be explored. This study is expected to demonstrate a significant sustainable reduction in home SBP for active PAC vs sham use in this population with mildly high BP.
Status | Not yet recruiting |
Enrollment | 200 |
Est. completion date | July 1, 2023 |
Est. primary completion date | July 1, 2023 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - Self-reported nonsmokers (for at least last year) - Has own smartphone - Systolic BP (SBP) at 120-145 mmHg - Diastolic blood pressure (DBP) <95 mmHg - Has history of hypertension with = 3 medications and stable without change in past 3 months - If medications are used, there should be no change in dosage during the 28-day study period. Exclusion Criteria: - Living with an active smoker who smokes indoors - Left upper arm circumference >17 inches (measured by tape measure upon recruitment as needed as it makes the home BP device inaccurate) - Pregnant - Unable/unwilling to consent - Established cardiovascular disease (CVD) - Stage IV clinical kidney disease (CKD) - Clear barrier to technology use (e.g., visual or hearing impairment) - Lung disease requiring oxygen - Cancer receiving treatment - Diabetes - COVID-19 infections - Any condition where the investigators believe the risk of a mildly high BP above 130/80 mmHg may pose risk to the patient during the 28-day period of the study including but not limited to aortic aneurysms |
Country | Name | City | State |
---|---|---|---|
n/a |
Lead Sponsor | Collaborator |
---|---|
Wayne State University |
Bevan GH, Al-Kindi SG, Brook RD, Münzel T, Rajagopalan S. Ambient Air Pollution and Atherosclerosis: Insights Into Dose, Time, and Mechanisms. Arterioscler Thromb Vasc Biol. 2021 Feb;41(2):628-637. doi: 10.1161/ATVBAHA.120.315219. Epub 2020 Dec 17. — View Citation
Bowe B, Xie Y, Yan Y, Al-Aly Z. Burden of Cause-Specific Mortality Associated With PM2.5 Air Pollution in the United States. JAMA Netw Open. 2019 Nov 1;2(11):e1915834. doi: 10.1001/jamanetworkopen.2019.15834. — View Citation
Brook RD, Bard RL, Burnett RT, Shin HH, Vette A, Croghan C, Phillips M, Rodes C, Thornburg J, Williams R. Differences in blood pressure and vascular responses associated with ambient fine particulate matter exposures measured at the personal versus commun — View Citation
Brook RD, Newby DE, Rajagopalan S. Air Pollution and Cardiometabolic Disease: An Update and Call for Clinical Trials. Am J Hypertens. 2017 Dec 8;31(1):1-10. doi: 10.1093/ajh/hpx109. Review. — View Citation
Burnett R, Chen H, Szyszkowicz M, Fann N, Hubbell B, Pope CA 3rd, Apte JS, Brauer M, Cohen A, Weichenthal S, Coggins J, Di Q, Brunekreef B, Frostad J, Lim SS, Kan H, Walker KD, Thurston GD, Hayes RB, Lim CC, Turner MC, Jerrett M, Krewski D, Gapstur SM, Di — View Citation
Cai Y, Zhang B, Ke W, Feng B, Lin H, Xiao J, Zeng W, Li X, Tao J, Yang Z, Ma W, Liu T. Associations of Short-Term and Long-Term Exposure to Ambient Air Pollutants With Hypertension: A Systematic Review and Meta-Analysis. Hypertension. 2016 Jul;68(1):62-70 — View Citation
Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V, Freedman G, Hubbell B, Jobling A, Kan H, Knibbs L, Liu Y, Martin R, Morawska L, Pope CA 3rd, Shin H, Straif K, Shaddick G, Thomas — View Citation
Di Q, Wang Y, Zanobetti A, Wang Y, Koutrakis P, Choirat C, Dominici F, Schwartz JD. Air Pollution and Mortality in the Medicare Population. N Engl J Med. 2017 Jun 29;376(26):2513-2522. doi: 10.1056/NEJMoa1702747. — View Citation
Dvonch JT, Kannan S, Schulz AJ, Keeler GJ, Mentz G, House J, Benjamin A, Max P, Bard RL, Brook RD. Acute effects of ambient particulate matter on blood pressure: differential effects across urban communities. Hypertension. 2009 May;53(5):853-9. doi: 10.11 — View Citation
Giorgini P, Di Giosia P, Grassi D, Rubenfire M, Brook RD, Ferri C. Air Pollution Exposure and Blood Pressure: An Updated Review of the Literature. Curr Pharm Des. 2016;22(1):28-51. Review. — View Citation
Hajat A, Allison M, Diez-Roux AV, Jenny NS, Jorgensen NW, Szpiro AA, Vedal S, Kaufman JD. Long-term exposure to air pollution and markers of inflammation, coagulation, and endothelial activation: a repeat-measures analysis in the Multi-Ethnic Study of Ath — View Citation
Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature. 2015 Sep 17;525(7569):367-71. doi: 10.1038/nature15371. — View Citation
Liang R, Zhang B, Zhao X, Ruan Y, Lian H, Fan Z. Effect of exposure to PM2.5 on blood pressure: a systematic review and meta-analysis. J Hypertens. 2014 Nov;32(11):2130-40; discussion 2141. doi: 10.1097/HJH.0000000000000342. Review. — View Citation
Martenies SE, Milando CW, Williams GO, Batterman SA. Disease and Health Inequalities Attributable to Air Pollutant Exposure in Detroit, Michigan. Int J Environ Res Public Health. 2017 Oct 19;14(10). pii: E1243. doi: 10.3390/ijerph14101243. — View Citation
Morishita M, Adar SD, D'Souza J, Ziemba RA, Bard RL, Spino C, Brook RD. Effect of Portable Air Filtration Systems on Personal Exposure to Fine Particulate Matter and Blood Pressure Among Residents in a Low-Income Senior Facility: A Randomized Clinical Tri — View Citation
Newby DE, Mannucci PM, Tell GS, Baccarelli AA, Brook RD, Donaldson K, Forastiere F, Franchini M, Franco OH, Graham I, Hoek G, Hoffmann B, Hoylaerts MF, Künzli N, Mills N, Pekkanen J, Peters A, Piepoli MF, Rajagopalan S, Storey RF; ESC Working Group on Thr — View Citation
Rajagopalan S, Al-Kindi SG, Brook RD. Air Pollution and Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol. 2018 Oct 23;72(17):2054-2070. doi: 10.1016/j.jacc.2018.07.099. Review. — View Citation
Walzer D, Gordon T, Thorpe L, Thurston G, Xia Y, Zhong H, Roberts TR, Hochman JS, Newman JD. Effects of Home Particulate Air Filtration on Blood Pressure: A Systematic Review. Hypertension. 2020 Jul;76(1):44-50. doi: 10.1161/HYPERTENSIONAHA.119.14456. Epu — View Citation
Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ, Muntner P, Ovbiagele B, Smith SC Jr, Spencer CC, Stafford RS, Taler SJ, Thomas RJ, Williams KA Sr, Williamson JD — View Citation
Yang BY, Qian Z, Howard SW, Vaughn MG, Fan SJ, Liu KK, Dong GH. Global association between ambient air pollution and blood pressure: A systematic review and meta-analysis. Environ Pollut. 2018 Apr;235:576-588. doi: 10.1016/j.envpol.2018.01.001. Epub 2018 — View Citation
* Note: There are 20 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Blood pressure change measured by blood pressure meter | Home systolic and diastolic blood pressures will be measured using a self-administered blood pressure meter before (7 days) and during (21 days) the use of a portable air cleaner and compared between before and during use to see if blood pressures will be reduced during the air cleaner use phase, and between the intervention and control groups to see if there is a difference in blood pressure reduction between the two groups. | 28 days (Day 1 to Day 28 of the 4-week study). | |
Secondary | Demographaic characteristics measured by a questionnaire | Demographic characteristics such as age, sex, race/ethnicity and education will be measured using a questionnaire. All these variables will be assessed to see if they predict the blood pressure reduction (Primary Outcome). | One-time measurement at baseline (Day 1 to Day 7) | |
Secondary | Body mass index (BMI) | Height and weight will be measured using a scale and tape measured and combined to report BMI in kg/m^2. BMI will be assessed to see if it predicts the blood pressure reduction (Primary Outcome). | One-time measurement (Day 1 to Day 7) |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT00374855 -
A Study in People With Mild Hypertension
|
Phase 2 | |
Completed |
NCT01331486 -
Nitric Oxide Mediated Vasodilatory Response to Hawthorn Standardized Extract
|
Phase 1 | |
Completed |
NCT03714776 -
A Study to Assess the Safety, Tolerability and Efficacy of IONIS-AGT-LRx, an Antisense Inhibitor Administered Subcutaneously to Hypertensive Participants With Controlled Blood Pressure
|
Phase 2 |