Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT05625425
Other study ID # 19-27586-B
Secondary ID
Status Recruiting
Phase N/A
First received
Last updated
Start date January 1, 2024
Est. completion date January 31, 2026

Study information

Verified date November 2023
Source University of California, San Francisco
Contact Melissa Arioli
Phone 415-502-7321
Email melissa.arioli@ucsf.edu
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Therapeutic treatment is yet available for declining memory, which is an impairment affecting the quality of life for many older adults and patients with cognitive impairment. Cognitive training with an immersive video game promises to drive hippocampal-cortical plasticity and associated gains that can restore memory capability or provide therapeutic treatment for memory deficits.


Description:

A hallmark of higher cognition is the capability for flexible association of diverse bits of information stored in memory, such that experiences can be remembered in detailed and distinct terms (i.e., high-fidelity long-term memory). Interventions capable of sustaining improved learning and flexible association of new information into long-term memory (LTM) have shown promising pilot results, and further development is expected to find treatments to attenuate the decline of high-fidelity LTM in normal aging or provide therapeutic treatment for patients with cognitive impairment without dementia (i.e., MCI). This project applies a translational neuroscience approach in further development of a cognitive training intervention that targets sustained improvement in capabilities for long-term memory (LTM) and cognitive control. Treatments use commercially available head-mounted display Virtual Reality (VR) technology and tablet computers to present a deeply immersive spatial wayfinding video game. Based on preliminary results, the hypothesis is that immersion in a game to navigate errands through unfamiliar, visually complex neighborhoods (i.e., wayfinding) will be an effective means to environmental enrichment, which refers to a process whereby new and complex experiences bring change to brain and behavior. Research in humans shows that learning a new, enriched environment spurs the healthy function of the hippocampus and supports lifelong neurogenesis. Adult-borne hippocampal neurogenesis has been linked as the neurobiological basis for the formation of new, high-fidelity memories. The significance of this project includes functionality for remote training procedures (i.e., at home). The availability for participants to complete some of the experiment procedures at home will expand enrollment opportunities and prove the practicality of the intervention outside of a clinical setting. The Labyrinth spatial wayfinding game uses 3D and 2.5D computer graphics tools to present dozens of levels of adaptive challenge and deliver a dynamic, engaging experience for participants throughout the training regimen. In this project, participants will effect game movement using hand controllers while playing the game in a seated position. For each participant, pre- and post-training assessments will occur promptly before and after their 15 to 20-hour training regimen. Cognitive outcome measures will assess capabilities for high-fidelity LTM retrieval and control of sustained visual attention, and some measures will include collection of associated functional MRI (fMRI) and structural MRI data. Effectiveness of the wayfinding game intervention will be evidenced by post-training improvements in retrieval of high-fidelity LTM and cognitive control capabilities. FMRI results associated with the measured cognitive improvements will localize changes in functional brain networks that support gains in memory capabilities. Structural MRI measures will assess morphometric and volumetric changes from pre- to post-training assessments.


Recruitment information / eligibility

Status Recruiting
Enrollment 200
Est. completion date January 31, 2026
Est. primary completion date December 31, 2025
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 60 Years to 85 Years
Eligibility Inclusion Criteria: - fluent speakers of English - completed 12 or more years of education - normal or corrected-to-normal vision - dexterity to comfortably operate the scanner-compatible response box - freedom from physical and neurological conditions contra-indicated for fMRI - must confirm physical stamina and comfort for semi-weekly brisk 30-minute walks on level ground Exclusion Criteria: - use of psychotropic medications - history of concussions or dizziness, vestibular or balance problems - significant discomfort with virtual reality experiences

Study Design


Intervention

Behavioral:
LabyrinthVR software
Head-mounted display virtual reality game designed to induce environmental enrichment in an adaptive, highly engaging regimen of wayfinding in novel urban and village neighborhoods.
Placebo Games software
Commercially-available, narrative computer games marketed as cognitively enriching. Can be tablet-based or wireless VR headset-based.
Labyrinth Tablet software
Tablet computer playing Labyrinth spatial wayfinding game in 2.5D
Labyrinth VR wireless
Wireless head-mounted display virtual reality game designed to induce environmental enrichment in an adaptive, engaging regimen of wayfinding in novel urban and village neighborhoods.

Locations

Country Name City State
United States UCSF Mission Bay San Francisco California

Sponsors (1)

Lead Sponsor Collaborator
University of California, San Francisco

Country where clinical trial is conducted

United States, 

Outcome

Type Measure Description Time frame Safety issue
Primary MDT change in mnemonic discrimination Training-related change in Mnemonic Discrimination Task (MDT) score. MDT tests recognition memory for pairs of common objects (i.e., targets and lures), measuring the variable of the number of images identified as old (studied) or new (novel), and reports a composite index score (0.00 to 1.00) for accuracy post-training (T2) versus baseline (T1) baseline immediately before (T1) and post-assessment immediately after training regimen is completed (T2) providing for a composite score T2-T1
Primary TOUR change in recall Training-related change in recall of number of details in autobiographical memory from a narrated urban tour, such that a composite parametric score shows how many specific details were recalled post-training (T2) versus baseline (T1) baseline immediately before (T1) and post-assessment immediately after training regimen is completed (T2) providing for a composite score T2-T1
Primary Volumetric-based brain morphometry for gray and white matter Structural MRI T1 data will be analyzed in terms of volumetric-based morphometry, measuring the variables of cortical area. collected in association with Outcome 1, at baseline immediately before (T1) and post-assessment immediately after training regimen is completed (T2)
Primary Task-based cortical functional connectivity associated with mnemonic discrimination capability and in control of sustained visual attention functional MRI data will be analyzed in terms of beta-series correlations between co-active cortical regions of interest, measuring the variable of correlation of inter-trial variability across brain regions collected in association with Outcome 1, at baseline immediately before (T1) and post-assessment immediately after training regimen is completed (T2)
Secondary Remote Cognitive Module (RCM) A tablet application using a speech-text interface to administer neuropsychological tests comparable to CVLT-II verbal memory, verbal fluency, digit span and Trail Making Test-B. Measured variables are target words remembered baseline immediately before training regimen begins
See also
  Status Clinical Trial Phase
Completed NCT04513106 - Promoting Advance Care Planning for Persons With Early-stage Dementia in the Community: a Feasibility Trial N/A
Recruiting NCT06011681 - The Rapid Diagnosis of MCI and Depression in Patients Ages 60 and Over
Recruiting NCT04522739 - Spironolactone Safety in African Americans With Mild Cognitive Impairment and Early Alzheimer's Disease Phase 4
Active, not recruiting NCT03167840 - Falls Prevention Through Physical And Cognitive Training in Mild Cognitive Impairment N/A
Active, not recruiting NCT03676881 - Longitudinal Validation of a Computerized Cognitive Battery (Cognigram) in the Diagnosis of Mild Cognitive Impairment and Alzheimer's Disease
Not yet recruiting NCT05041790 - A Clinical Trial to Evaluate the Efficacy and Safety of Choline Alfoscerate Compared to Placebo in Patients With Degenerative Mild Cognitive Impairment Phase 4
Recruiting NCT04121156 - High Definition Transcranial Direct Current Stimulation (HD-tDCS) in Patients With Mild Cognitive Impairment N/A
Recruiting NCT03605381 - MORbidity PRevalence Estimate In StrokE
Completed NCT02774083 - Cognitive Training Using Feuerstein Instrumental Enrichment N/A
Completed NCT01315639 - New Biomarker for Alzheimer's Disease Diagnostic N/A
Enrolling by invitation NCT06023446 - Can (Optical Coherence Tomography) Pictures of the Retina Detect Alzheimer's Disease at Its Earliest Stages?
Completed NCT04567745 - Automated Retinal Image Analysis System (EyeQuant) for Computation of Vascular Biomarkers Phase 1
Recruiting NCT05579236 - Cortical Disarray Measurement in Mild Cognitive Impairment and Alzheimer's Disease
Completed NCT03583879 - Using Gait Robotics to Improve Symptoms of Parkinson's Disease N/A
Terminated NCT02503501 - Intranasal Glulisine in Amnestic Mild Cognitive Impairment and Probable Mild Alzheimer's Disease Phase 2
Not yet recruiting NCT03740178 - Multiple Dose Trial of MK-4334 in Participants With Alzheimer's Clinical Syndrome (MK-4334-005) Phase 1
Active, not recruiting NCT05204940 - Longitudinal Observational Biomarker Study
Recruiting NCT02663531 - Retinal Neuro-vascular Coupling in Patients With Neurodegenerative Disease N/A
Recruiting NCT06150352 - Sleep Apnea, Neurocognitive Decline and Brain Imaging in Patients With Subjective or Mild Cognitive Impairment
Recruiting NCT03507192 - Effects of Muscle Relaxation on Cognitive Function in Patients With Mild Cognitive Impairment and Early Stage Dementia. N/A