Clinical Trials Logo

Clinical Trial Details — Status: Not yet recruiting

Administrative data

NCT number NCT05006599
Other study ID # IRB00073876
Secondary ID
Status Not yet recruiting
Phase Phase 2
First received
Last updated
Start date May 2025
Est. completion date May 2031

Study information

Verified date May 2023
Source Wake Forest University Health Sciences
Contact Deborah Dahl, RN
Phone 336-713-3432
Email ddahl@wakehealth.edu
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

The SNIFF 3-Week Aptar Device study will involve using a device to administer insulin or placebo through each participant's nose or intra-nasally. Insulin is a hormone that is produced in the body. It works by lowering levels of glucose (sugar) in the blood. This study is measuring how much insulin the device delivers. In addition, this study will look at the effects of insulin or placebo administered intra-nasally using an intranasal delivery device on memory, blood, and cerebrospinal fluid (CSF).


Description:

The proposed study will examine whether an intranasal delivery device can be used by adults with preclinical Alzheimer's disease (cognitively normal but with abnormal brain levels of the hallmark peptide Aβ) to reliably deliver insulin or placebo four times daily over a 4 week period. We will also examine effects of treatment on cognition, CSF biomarkers, and cerebral perfusion. If successful, information gained from the study will inform the design of future Phase III trials of intranasal insulin.


Recruitment information / eligibility

Status Not yet recruiting
Enrollment 40
Est. completion date May 2031
Est. primary completion date May 2029
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 55 Years to 85 Years
Eligibility Inclusion Criteria: 1. Age 55 to 85 (inclusive) 2. Fluent in English 3. Cognitively normal or diagnosis of amnestic mild cognitive impairment (aMCI) or mild Alzheimer's disease (AD) 4. Amyloid positive by positron emission tomography (PET) or cerebrospinal fluid (CSF) criteria 5. Stable medical condition for 3 months prior to screening visit 6. Stable medications for 4 weeks prior to the screening and study visits (exceptions may be made on a case by case basis by the study physician) 7. Clinical laboratory values must be within normal limits or, if abnormal, must be judged to be clinically insignificant by the study physician Exclusion Criteria: 1. A diagnosis of dementia other than Alzheimer's disease (AD) 2. History of a clinically significant stroke 3. Current evidence or history in past two years of epilepsy, head injury with loss of consciousness, any major psychiatric disorder including psychosis, major depression, bipolar disorder 4. Diabetes (type I or type II) insulin-dependent and non-insulin-dependent diabetes mellitus 5. Current or past regular use of insulin or any other anti-diabetic medication within 2 months of screening visit 6. History of seizure within past five years 7. Pregnancy or possible pregnancy 8. Use of anticoagulants 9. Residence in a skilled nursing facility at screening 10. Use of an investigational agent within two months of screening visit 11. Regular use of alcohol, narcotics, anticonvulsants, anti-parkinsonian medications, or any other exclusionary medications (exceptions may be made on a case by case basis by the study physician)

Study Design


Intervention

Drug:
Insulin (Humulin® R U-100)
Participants will administer 40 IU of Humulin® U-100 insulin four times per day with an intranasal delivery device.
Placebo
Participants will administer placebo (insulin diluent) four times per day with an intranasal delivery device.
Device:
Aptar Pharma CPS Intranasal Delivery Device
Participants will be assigned to receive Humulin® insulin or placebo administered through the Aptar Pharma CPS intranasal delivery device.

Locations

Country Name City State
n/a

Sponsors (1)

Lead Sponsor Collaborator
Wake Forest University Health Sciences

References & Publications (52)

Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011 May;7(3):270-9. doi: 10.1016/j.jalz.2011.03.008. Epub 2011 Apr 21. — View Citation

Baker H, Spencer RF. Transneuronal transport of peroxidase-conjugated wheat germ agglutinin (WGA-HRP) from the olfactory epithelium to the brain of the adult rat. Exp Brain Res. 1986;63(3):461-73. doi: 10.1007/BF00237470. — View Citation

Baker LD, Cross DJ, Minoshima S, Belongia D, Watson GS, Craft S. Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch Neurol. 2011 Jan;68(1):51-7. doi: 10.1001/archneurol.2010.225. Epub 2010 Sep 13. — View Citation

Balin BJ, Broadwell RD, Salcman M, el-Kalliny M. Avenues for entry of peripherally administered protein to the central nervous system in mouse, rat, and squirrel monkey. J Comp Neurol. 1986 Sep 8;251(2):260-80. doi: 10.1002/cne.902510209. — View Citation

Benedict C, Hallschmid M, Hatke A, Schultes B, Fehm HL, Born J, Kern W. Intranasal insulin improves memory in humans. Psychoneuroendocrinology. 2004 Nov;29(10):1326-34. doi: 10.1016/j.psyneuen.2004.04.003. — View Citation

Benedict C, Kern W, Schultes B, Born J, Hallschmid M. Differential sensitivity of men and women to anorexigenic and memory-improving effects of intranasal insulin. J Clin Endocrinol Metab. 2008 Apr;93(4):1339-44. doi: 10.1210/jc.2007-2606. Epub 2008 Jan 29. — View Citation

Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL. Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci. 2002 Jun;5(6):514-6. doi: 10.1038/nn849. No abstract available. — View Citation

Broadwell RD, Balin BJ. Endocytic and exocytic pathways of the neuronal secretory process and trans-synaptic transfer of wheat germ agglutinin-horseradish peroxidase in vivo. J Comp Neurol. 1985 Dec 22;242(4):632-50. doi: 10.1002/cne.902420410. — View Citation

Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006 Mar;129(Pt 3):564-83. doi: 10.1093/brain/awl004. Epub 2006 Jan 6. — View Citation

Chiu SL, Chen CM, Cline HT. Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron. 2008 Jun 12;58(5):708-19. doi: 10.1016/j.neuron.2008.04.014. — View Citation

Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, Arbuckle M, Callaghan M, Tsai E, Plymate SR, Green PS, Leverenz J, Cross D, Gerton B. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol. 2012 Jan;69(1):29-38. doi: 10.1001/archneurol.2011.233. Epub 2011 Sep 12. — View Citation

Craft S, Peskind E, Schwartz MW, Schellenberg GD, Raskind M, Porte D Jr. Cerebrospinal fluid and plasma insulin levels in Alzheimer's disease: relationship to severity of dementia and apolipoprotein E genotype. Neurology. 1998 Jan;50(1):164-8. doi: 10.1212/wnl.50.1.164. — View Citation

Craft S, Watson GS. Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurol. 2004 Mar;3(3):169-78. doi: 10.1016/S1474-4422(04)00681-7. — View Citation

De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP, Viola KL, Zhao WQ, Ferreira ST, Klein WL. Protection of synapses against Alzheimer's-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1971-6. doi: 10.1073/pnas.0809158106. Epub 2009 Feb 2. Erratum In: Proc Natl Acad Sci U S A. 2009 May 5;106(18):7678. — View Citation

Fishel MA, Watson GS, Montine TJ, Wang Q, Green PS, Kulstad JJ, Cook DG, Peskind ER, Baker LD, Goldgaber D, Nie W, Asthana S, Plymate SR, Schwartz MW, Craft S. Hyperinsulinemia provokes synchronous increases in central inflammation and beta-amyloid in normal adults. Arch Neurol. 2005 Oct;62(10):1539-44. doi: 10.1001/archneur.62.10.noc50112. — View Citation

Francis GJ, Martinez JA, Liu WQ, Xu K, Ayer A, Fine J, Tuor UI, Glazner G, Hanson LR, Frey WH 2nd, Toth C. Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy. Brain. 2008 Dec;131(Pt 12):3311-34. doi: 10.1093/brain/awn288. Epub 2008 Nov 16. — View Citation

Frolich L, Blum-Degen D, Bernstein HG, Engelsberger S, Humrich J, Laufer S, Muschner D, Thalheimer A, Turk A, Hoyer S, Zochling R, Boissl KW, Jellinger K, Riederer P. Brain insulin and insulin receptors in aging and sporadic Alzheimer's disease. J Neural Transm (Vienna). 1998;105(4-5):423-38. doi: 10.1007/s007020050068. — View Citation

Galasko D, Bennett D, Sano M, Ernesto C, Thomas R, Grundman M, Ferris S. An inventory to assess activities of daily living for clinical trials in Alzheimer's disease. The Alzheimer's Disease Cooperative Study. Alzheimer Dis Assoc Disord. 1997;11 Suppl 2:S33-9. — View Citation

Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF, Greengard P, Xu H. Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci. 2001 Apr 15;21(8):2561-70. doi: 10.1523/JNEUROSCI.21-08-02561.2001. — View Citation

Gil-Bea FJ, Solas M, Solomon A, Mugueta C, Winblad B, Kivipelto M, Ramirez MJ, Cedazo-Minguez A. Insulin levels are decreased in the cerebrospinal fluid of women with prodomal Alzheimer's disease. J Alzheimers Dis. 2010;22(2):405-13. doi: 10.3233/JAD-2010-100795. — View Citation

Hallschmid M, Benedict C, Schultes B, Born J, Kern W. Obese men respond to cognitive but not to catabolic brain insulin signaling. Int J Obes (Lond). 2008 Feb;32(2):275-82. doi: 10.1038/sj.ijo.0803722. Epub 2007 Sep 11. — View Citation

Hong M, Lee VM. Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. J Biol Chem. 1997 Aug 1;272(31):19547-53. doi: 10.1074/jbc.272.31.19547. — View Citation

Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL. A new clinical scale for the staging of dementia. Br J Psychiatry. 1982 Jun;140:566-72. doi: 10.1192/bjp.140.6.566. — View Citation

Illum L. Nasal drug delivery: new developments and strategies. Drug Discov Today. 2002 Dec 1;7(23):1184-9. doi: 10.1016/s1359-6446(02)02529-1. — View Citation

Kern W, Born J, Schreiber H, Fehm HL. Central nervous system effects of intranasally administered insulin during euglycemia in men. Diabetes. 1999 Mar;48(3):557-63. doi: 10.2337/diabetes.48.3.557. — View Citation

Kristensson K, Olsson Y. Uptake of exogenous proteins in mouse olfactory cells. Acta Neuropathol. 1971;19(2):145-54. doi: 10.1007/BF00688493. No abstract available. — View Citation

Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001 Sep;16(9):606-13. doi: 10.1046/j.1525-1497.2001.016009606.x. — View Citation

Kupila A, Sipila J, Keskinen P, Simell T, Knip M, Pulkki K, Simell O. Intranasally administered insulin intended for prevention of type 1 diabetes--a safety study in healthy adults. Diabetes Metab Res Rev. 2003 Sep-Oct;19(5):415-20. doi: 10.1002/dmrr.397. — View Citation

Lee CC, Kuo YM, Huang CC, Hsu KS. Insulin rescues amyloid beta-induced impairment of hippocampal long-term potentiation. Neurobiol Aging. 2009 Mar;30(3):377-87. doi: 10.1016/j.neurobiolaging.2007.06.014. Epub 2007 Aug 10. — View Citation

Minoshima S, Frey KA, Foster NL, Kuhl DE. Preserved pontine glucose metabolism in Alzheimer disease: a reference region for functional brain image (PET) analysis. J Comput Assist Tomogr. 1995 Jul-Aug;19(4):541-7. doi: 10.1097/00004728-199507000-00006. — View Citation

Minoshima S, Koeppe RA, Frey KA, Kuhl DE. Anatomic standardization: linear scaling and nonlinear warping of functional brain images. J Nucl Med. 1994 Sep;35(9):1528-37. — View Citation

Morris JC, Ernesto C, Schafer K, Coats M, Leon S, Sano M, Thal LJ, Woodbury P. Clinical dementia rating training and reliability in multicenter studies: the Alzheimer's Disease Cooperative Study experience. Neurology. 1997 Jun;48(6):1508-10. doi: 10.1212/wnl.48.6.1508. — View Citation

Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, Winblad B. Current concepts in mild cognitive impairment. Arch Neurol. 2001 Dec;58(12):1985-92. doi: 10.1001/archneur.58.12.1985. — View Citation

Pontiroli AE, Alberetto M, Secchi A, Dossi G, Bosi I, Pozza G. Insulin given intranasally induces hypoglycaemia in normal and diabetic subjects. Br Med J (Clin Res Ed). 1982 Jan 30;284(6312):303-6. doi: 10.1136/bmj.284.6312.303. — View Citation

Reger MA, Watson GS, Frey WH 2nd, Baker LD, Cholerton B, Keeling ML, Belongia DA, Fishel MA, Plymate SR, Schellenberg GD, Cherrier MM, Craft S. Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. Neurobiol Aging. 2006 Mar;27(3):451-8. doi: 10.1016/j.neurobiolaging.2005.03.016. Epub 2005 Jun 16. — View Citation

Reger MA, Watson GS, Green PS, Baker LD, Cholerton B, Fishel MA, Plymate SR, Cherrier MM, Schellenberg GD, Frey WH 2nd, Craft S. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. J Alzheimers Dis. 2008 Apr;13(3):323-31. doi: 10.3233/jad-2008-13309. — View Citation

Reger MA, Watson GS, Green PS, Wilkinson CW, Baker LD, Cholerton B, Fishel MA, Plymate SR, Breitner JC, DeGroodt W, Mehta P, Craft S. Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology. 2008 Feb 5;70(6):440-8. doi: 10.1212/01.WNL.0000265401.62434.36. Epub 2007 Oct 17. Erratum In: Neurology. 2008 Sep 9;71(11):866. — View Citation

Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer's disease: link to brain reductions in acetylcholine. J Alzheimers Dis. 2005 Dec;8(3):247-68. doi: 10.3233/jad-2005-8304. — View Citation

Sakane T, Akizuki M, Taki Y, Yamashita S, Sezaki H, Nadai T. Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the molecular weight of drugs. J Pharm Pharmacol. 1995 May;47(5):379-81. doi: 10.1111/j.2042-7158.1995.tb05814.x. — View Citation

Sano M, Raman R, Emond J, Thomas RG, Petersen R, Schneider LS, Aisen PS. Adding delayed recall to the Alzheimer Disease Assessment Scale is useful in studies of mild cognitive impairment but not Alzheimer disease. Alzheimer Dis Assoc Disord. 2011 Apr-Jun;25(2):122-7. doi: 10.1097/WAD.0b013e3181f883b7. — View Citation

Selkoe DJ. Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res. 2008 Sep 1;192(1):106-13. doi: 10.1016/j.bbr.2008.02.016. Epub 2008 Feb 17. — View Citation

Shipley MT. Transport of molecules from nose to brain: transneuronal anterograde and retrograde labeling in the rat olfactory system by wheat germ agglutinin-horseradish peroxidase applied to the nasal epithelium. Brain Res Bull. 1985 Aug;15(2):129-42. doi: 10.1016/0361-9230(85)90129-7. — View Citation

Spitzer RL, Kroenke K, Williams JB, Lowe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med. 2006 May 22;166(10):1092-7. doi: 10.1001/archinte.166.10.1092. — View Citation

Stockhorst U, de Fries D, Steingrueber HJ, Scherbaum WA. Insulin and the CNS: effects on food intake, memory, and endocrine parameters and the role of intranasal insulin administration in humans. Physiol Behav. 2004 Oct 30;83(1):47-54. doi: 10.1016/j.physbeh.2004.07.022. — View Citation

Thorne RG, Emory CR, Ala TA, Frey WH 2nd. Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain Res. 1995 Sep 18;692(1-2):278-82. doi: 10.1016/0006-8993(95)00637-6. — View Citation

Thorne RG, Pronk GJ, Padmanabhan V, Frey WH 2nd. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127(2):481-96. doi: 10.1016/j.neuroscience.2004.05.029. — View Citation

Townsend M, Mehta T, Selkoe DJ. Soluble Abeta inhibits specific signal transduction cascades common to the insulin receptor pathway. J Biol Chem. 2007 Nov 16;282(46):33305-33312. doi: 10.1074/jbc.M610390200. Epub 2007 Sep 13. — View Citation

Weiss P, Holland Y. Neuronal dynamics and axonal flow, ii. The olfactory nerve as model test object. Proc Natl Acad Sci U S A. 1967 Feb;57(2):258-64. doi: 10.1073/pnas.57.2.258. No abstract available. — View Citation

Worsley KJ, Evans AC, Marrett S, Neelin P. A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab. 1992 Nov;12(6):900-18. doi: 10.1038/jcbfm.1992.127. — View Citation

Yu L, Buysse DJ, Germain A, Moul DE, Stover A, Dodds NE, Johnston KL, Pilkonis PA. Development of short forms from the PROMIS sleep disturbance and Sleep-Related Impairment item banks. Behav Sleep Med. 2011 Dec 28;10(1):6-24. doi: 10.1080/15402002.2012.636266. — View Citation

Zhao L, Teter B, Morihara T, Lim GP, Ambegaokar SS, Ubeda OJ, Frautschy SA, Cole GM. Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade: implications for Alzheimer's disease intervention. J Neurosci. 2004 Dec 8;24(49):11120-6. doi: 10.1523/JNEUROSCI.2860-04.2004. — View Citation

Zhao WQ, Townsend M. Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer's disease. Biochim Biophys Acta. 2009 May;1792(5):482-96. doi: 10.1016/j.bbadis.2008.10.014. Epub 2008 Nov 5. — View Citation

* Note: There are 52 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Other Change in Quick Dementia Rating Scale (QDRS) Score The QDRS (Galvin, 2015) is a clinical scale that rates the severity of dementia as absent, questionable, mild, moderate, or severe (Clinical Dementia Rating score of 0, 0.5, 1, 2, or 3, respectively). The score assesses six domains: memory, orientation, judgment and problem solving, community affairs, home and hobbies, and personal care. At Screening the QDRS global score will be used for eligibility purposes. For all other administrations, the 6 domain scores will be summed to get the QDRS Sum of Boxes (SB) score. Sum of boxes score ranges from 0-100 with a high score meaning more severe dementia. Baseline to Week 8
Other Change in Patient Health Questionnaire (PHQ-9) Score The Patient Health Questionnaire (PHQ-9) is a 9-item, validated measure of depression severity. Respondents indicate how bothered by problems they are on a scale from 0 (not at all) to 3 (nearly every day). Total scores range from 0 to 27, where higher scores indicate more severe depression. Baseline to Week 8
Other Change in Generalized Anxiety Disorder scale-7 (GAD-7) Score Changes in anxiety will be measured using the Generalized Anxiety Disorder Scale (GAD-7), which contains 7 items with total scores ranging from 0 to 21. Scores of 5, 10, and 15 are cut-offs for mild, moderate, and severe anxiety, respectively. Baseline to Week 8
Other Change in PROMIS Sleep Disturbance Questionnaire Score A questionnaire to assess self-reported quality of general sleep and sleep disturbance. Each item on the form is rated on a 5-point scale (1=never; 2=rarely; 3=sometimes; 4=often; and 5=always) with a range in score from 8 to 40 with higher scores indicating greater severity of sleep disturbance. Baseline to Week 8
Other Change in the Alzheimer's Disease Cooperative Study Activities of Daily Living Scale for Mild Cognitive Impairment (ADCS-ADL-MCI) An interview-based assessment of information provided by the study partner (informant). The total scores based on 18 items on the scale range from 0 to 53 with lower scores representing greater impairment. Baseline to Week 8
Primary Percentage of Prescribed Dose Taken Participant self-reported medication adherence information will be calculated by study staff on a 0%-100% scale. A score below 80% indicates low medication adherence and a score of 80% or higher indicates high medication adherence. Week 4
Secondary Change in the Preclinical Alzheimer Cognitive Composite 5 (PACC5) Z-Score Cognition will be measured using the PACC5 scale, which includes the free/cued selective reminding test, delayed paragraph recall, digit-symbol substitution, mini mental state score, and the category fluency task. The PACC5 is a composite score comprised of measures of global cognition, memory, and executive function. The score reflects an averaged z-score, with higher scores indicating better cognitive performance. Baseline to Week 8
Secondary Change in the 14-item Alzheimer's Disease Assessment Scale-Cognitive subscale (ADAS-Cog 14) Score A psychometric instrument that evaluates memory, attention, reasoning, language, orientation, and praxis. A higher score indicates more impairment. Scores from the original portion of the test range from 0 (best) to 65 (worse), and are added to the mean of the words not immediately recalled (max of 10) and the number of items not recalled after a delay (ranging from 0-10) all total the maximum score of 85. A positive change indicates cognitive worsening. Baseline to Week 8
Secondary Change in Cerebrospinal Fluid (CSF) Insulin Levels Measurement of the levels of insulin in cerebrospinal fluid (CSF) after being delivered with the intranasal delivery device. This will help to determine the ability of the intranasal delivery device to increase levels of insulin in CSF. Baseline to Week 8
Secondary Change in amyloid ß-peptide (Aß) 40 (Aß40) in Cerebrospinal Fluid (CSF) Cerebrospinal fluid (CSF) samples will be used to measure the levels of amyloid ß-peptide (Aß) 40. CSF Aß40 is a key Alzheimer's disease (AD) biomarker that reflects pathological aggregation of amyloid in the brain. Baseline to Week 8
Secondary Change in amyloid ß-peptide (Aß) 42 (Aß42) in Cerebrospinal Fluid (CSF) Cerebrospinal fluid (CSF) samples will be used to measure the levels of amyloid ß-peptide (Aß) 42. CSF Aß42 is a key Alzheimer's disease (AD) biomarker that reflects pathological aggregation of amyloid in the brain. Baseline to Week 8
Secondary Change in Cerebrospinal Fluid (CSF) Levels of Total Tau Cerebrospinal fluid (CSF) samples will be used to measure the levels of total tau protein in the brain to assess impact on brain tau as a relevant Alzheimer's Disease (AD) biomarker. Baseline to Week 8
Secondary Change in Cerebrospinal Fluid (CSF) Levels of Phospho-Tau 181 Cerebrospinal fluid (CSF) samples will be used to measure the levels of phospho-tau 181 protein in the brain to assess impact on brain tau as a relevant Alzheimer's Disease (AD) biomarker. Baseline to Week 8
Secondary Change in Cerebrospinal Fluid (CSF) Levels of Phospho-Tau 217 Cerebrospinal fluid (CSF) samples will be used to measure the levels of phospho-tau 217 protein in the brain to assess impact on brain tau as a relevant Alzheimer's Disease (AD) biomarker. Baseline to Week 8
See also
  Status Clinical Trial Phase
Completed NCT04513106 - Promoting Advance Care Planning for Persons With Early-stage Dementia in the Community: a Feasibility Trial N/A
Recruiting NCT06011681 - The Rapid Diagnosis of MCI and Depression in Patients Ages 60 and Over
Recruiting NCT04522739 - Spironolactone Safety in African Americans With Mild Cognitive Impairment and Early Alzheimer's Disease Phase 4
Active, not recruiting NCT03167840 - Falls Prevention Through Physical And Cognitive Training in Mild Cognitive Impairment N/A
Active, not recruiting NCT03676881 - Longitudinal Validation of a Computerized Cognitive Battery (Cognigram) in the Diagnosis of Mild Cognitive Impairment and Alzheimer's Disease
Not yet recruiting NCT05041790 - A Clinical Trial to Evaluate the Efficacy and Safety of Choline Alfoscerate Compared to Placebo in Patients With Degenerative Mild Cognitive Impairment Phase 4
Recruiting NCT04121156 - High Definition Transcranial Direct Current Stimulation (HD-tDCS) in Patients With Mild Cognitive Impairment N/A
Recruiting NCT03605381 - MORbidity PRevalence Estimate In StrokE
Completed NCT02774083 - Cognitive Training Using Feuerstein Instrumental Enrichment N/A
Completed NCT01315639 - New Biomarker for Alzheimer's Disease Diagnostic N/A
Enrolling by invitation NCT06023446 - Can (Optical Coherence Tomography) Pictures of the Retina Detect Alzheimer's Disease at Its Earliest Stages?
Completed NCT04567745 - Automated Retinal Image Analysis System (EyeQuant) for Computation of Vascular Biomarkers Phase 1
Recruiting NCT05579236 - Cortical Disarray Measurement in Mild Cognitive Impairment and Alzheimer's Disease
Completed NCT03583879 - Using Gait Robotics to Improve Symptoms of Parkinson's Disease N/A
Terminated NCT02503501 - Intranasal Glulisine in Amnestic Mild Cognitive Impairment and Probable Mild Alzheimer's Disease Phase 2
Not yet recruiting NCT03740178 - Multiple Dose Trial of MK-4334 in Participants With Alzheimer's Clinical Syndrome (MK-4334-005) Phase 1
Active, not recruiting NCT05204940 - Longitudinal Observational Biomarker Study
Recruiting NCT02663531 - Retinal Neuro-vascular Coupling in Patients With Neurodegenerative Disease N/A
Recruiting NCT06150352 - Sleep Apnea, Neurocognitive Decline and Brain Imaging in Patients With Subjective or Mild Cognitive Impairment
Recruiting NCT03507192 - Effects of Muscle Relaxation on Cognitive Function in Patients With Mild Cognitive Impairment and Early Stage Dementia. N/A