View clinical trials related to MIDD.
Filter by:The main goal of the project is provision of a global registry for mitochondrial disorders to harmonize previous national registries, enable world-wide participation and facilitate natural history studies, definition of outcome measures and conduction of clinical trials.
Mitochondrial diseases, estimated prevalence 1 in 4,300 adults, is caused by pathogenic mutations in genes finally encoding for mitochondrial proteins of the various enzyme complexes of the OXPHOS. Among these mutations, the 3243A>G nucleotide change in the mitochondrially encoded transfer RNALeu(UUR) leucine 1 gene (MT TL 1) is the most prevalent one. The OXPHOS dysfunction resulting from such mutations leads to increased production of reactive oxygen species (ROS), ultimately leading to irreversible oxidative damage of macromolecules, or to more selective and reversible redox modulation of cell signaling that may impact (adult) neurogenesis. Despite advances in the understanding of mitochondrial disorders, treatment options are extremely limited and, to date, largely supportive. Therefore, there is an urgent need for novel treatments. KH176, a new active pharmaceutical ingredient (API), is an orally bio-available small molecule under development for the treatment of these disorders (see Section 1.4). The current study will further evaluate the effect of KH176 in various cognitive domains and evaluate the effect of different doses of KH176 (See Section 1.5). In view of the growing recognition of the importance of mitochondrial function in maintaining cognitive processes in the brain, as well as the understanding of the safety profile and pharmacokinetics of KH176 following the two clinical studies described above, a more detailed study is indicated of the effects of KH176 in various cognitive domains, using the confirmed safe and well-tolerated KH176 dose of 100 mg bid, as well as a lower dose of 50 mg bid. The primary objective is an evaluation of KH176 in the attention domain of cognitive functioning, as assessed by the visual identification test score of the Cogstate computerised cognitive testing battery.
Mitochondrial Diseases are rare, progressive, multi-system, often-early fatal disorders affecting both children and adults. KH176 is a novel chemical entity currently under development for the treatment of inherited mitochondrial diseases, including MELAS (Mitochondrial Encephalomyopathy, Lactic acidosis, and Stroke-like episodes), MIDD (Maternally Inherited Diabetes and Deafness), Leigh's Disease and LHON (Leber's Hereditary Optic Neuropathy). The current Proof of Concept study aims to explore the effects of treatment with KH176 for 4 weeks on clinical signs and symptoms and biomarkers of mitochondrial disease and to evaluate the safety and pharmacokinetics of KH176 in patients with m.3242A>G related mitochondrial disease.