Clinical Trials Logo

Clinical Trial Summary

Alterations in the brain microcirculation may be involved in patients with shock. For a three-day period, we investigate the brain microcirculation using contrast-enhanced ultrasound with microbubble injection in patients with septic and non-septic shock.Ultrasound examination is performed daily to estimate global cerebral blood flow, and to evaluate the brain microcirculation, using variables of the time-intensity brain perfusion curve, after sulphur hexafluoride microbubble Sonovue injection.


Clinical Trial Description

Non-invasive brain ultrasound with transcranial echo-color doppler (IE 33, Philips Medical System, the Netherlands) is performed in three steps to 1) evaluate the global cerebral blood volume, 2) to estimate the presence or absence of cerebral autoregulation, and 3) to qualitatively evaluate the cerebral perfusion and microcirculation by enhanced microbubbles contrast injection (CEUS). Brain ultrasound is performed in the first 48 hours after hemodynamic stabilization (MAP > 65mm Hg, normotherm) and respiratory parameters stabilization (PaCO2 between 35-45mmHg and the PaO2/FiO2 > 200) after ICU admission. The second and third examination is performed in the next 48-72 hours before sedation withdrawal to limit the effect of change of cerebral hemodynamics.

Before performing brain ultrasound, echocardiography (IE 33, Philips medical System, the Netherlands) is performed to evaluate left ventricular ejection fraction and cardiac output (L/min).

First, the global cerebral blood volume (L/min) is evaluated as the sum of flow volumes of the internal carotid (ICA) and vertebral arteries (VA) extracranial arteries of both sides. The internal carotid artery (ICA) is examined with a 7-MHz linear array transducer with the head of the patient slightly titled upward, in midline position. The site of measurement is approximately 1.5cm below the carotid bulb in the in the common carotid artery (CCA) during expansion and 1.5cm away from the bifurcation in ICA. In the presence of atheromatous calcifications plaques, ICA doppler measurement is performed outside and before the plaques. The B-mode bidimensional is magnified to achieve a higher resolution and details. The internal diameter of the vessel is measured at the exact site of the pulse doppler velocity measurement ample volume, between both endothelial layers, perpendicular of the course of the vessel. The diameter of the vertebral artery is examined and magnified in B-mode. The transducer is positioned along the CCA, shiftily laterally and angled until the intertransverse segment of the VA is seen and the doppler velocity is measured at the C4-C5 transverse area along the common carotid artery exactly at the same place of diameter measurement. The following measurements of flow velocities are taken in each artery: Peak systolic and end-diastolic velocity, time-averaged velocity (TAV), Pulsatility Index (PI). Flow volume (Q) of each artery is determined as Q = TAV x Area ((diameter of the artery /2)² x PI).

Transcranial echo-color doppler is performed via temporal windows and the Pulsatility Index (PI) and the mean flow velocities (cm/sec) are measured of MCA, at both sides are recorded. Cerebrovascular resistance index as defined as the ration MAP/Mean Flow velocity of MCA (mmHg/cm per second).

Second, after measuring the global cerebral blood volume, the presence or absence of cerebral autoregulation (CA) is tested with the Transient hyperemic response (THR) by measuring the velocity of the media cerebral artery (MCA) the following an ipsilateral common carotid compression during 8 seconds. THR is defined as the F3/F1 ratio F1 as the MCA velocity before compression and F3 is the second MCA velocity after compression test). THR test is valid when onset of compression results a sudden and maximal decrease in MCA blood velocity and remains stable during compression.

Third, after testing the THR, the brain regional microcirculation is evaluated by the microbubbles contrast injection SONOVUE (Italy) following the European guidelines recommendation for contrast microbubbles enhanced ultrasound. The brain parenchyma is insonated via the temporal bone windows at the depth of 10cm with the ultrasound S5 multifrequency transducer 2-5 MHz probe. After optimizing the acoustic bone window, SONOVUE is injected intravenously as a bolus 2.4ml followed by 10ml saline flushed. The contralateral brain is evaluated 5 minutes after the first injection of SONOVUE to allow a complete evacuation of contrast microbubbles.

All real-time CEUS images were stored digitally on the hard disk as DICOM (Digital Image Communications in Medicine) images. Offline analysis used the QLAB 10 quantification software (Philips Medical System, the Netherlands) to convert brain perfusion images into time-intensity curves (TIC) corresponding to the five different regions of interest (ROI) of brain parenchyma: anterior and posterior thalamus, lentiform nucleus, parieto-temporal and posterior white matter. Four variables were extracted from these TIC curves to qualitatively evaluate the brain microcirculation: peak intensity in dB (PI), time to peak intensity in seconds (TTP), mean transit time in seconds (MTT), and area under the curve in dB/seconds (AUC) . ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04290767
Study type Interventional
Source Universitair Ziekenhuis Brussel
Contact Duc Nam Nguyen, MD, PhD
Phone 3224775178
Email namduc.nguyen@uzbrussel.be
Status Recruiting
Phase N/A
Start date March 6, 2019
Completion date December 31, 2022

See also
  Status Clinical Trial Phase
Not yet recruiting NCT05898126 - Renin-guided Hemodynamic Management in Patients With Shock N/A
Completed NCT05563701 - Evaluation of the LVivo Image Quality Scoring (IQS)
Recruiting NCT05066256 - LV Diastolic Function vs IVC Diameter Variation as Predictor of Fluid Responsiveness in Shock N/A
Not yet recruiting NCT05649891 - Checklists Resuscitation Emergency Department N/A
Terminated NCT02755155 - Optimization of Therapeutic Human Serum Albumin Infusion in Selected Critically Ill Patients Phase 4
Not yet recruiting NCT01941472 - Transcutaneous pO2, Transcutaneous pCO2 and Central Venous pO2 Variations to Predict Fluid Responsiveness N/A
Completed NCT01680783 - Non-Invasive Ventilation Via a Helmet Device for Patients Respiratory Failure N/A
Terminated NCT01696175 - PICU Admission Lactate and Central Venous Oxymetry Study N/A
Recruiting NCT01157299 - Hemodynamic Evaluation of Preload Responsiveness in Children by Using PiCCO N/A
Recruiting NCT01174966 - Assessment of Transcutaneous Oxygen Tension/Oxygen Challenge Test in Intensive Care Unit (ICU) Patients N/A
Completed NCT00743522 - Programming Implantable Cardioverter Defibrillators in Patients With Primary Prevention Indication
Completed NCT03296891 - Point of Care Ultrasonography In The Management of Shock: A Pilot Study N/A
Not yet recruiting NCT05922982 - Norepinephrine Weaning Guided by the Hypotension Prediction Index in Vasoplegic Shock After Cardiac Surgery N/A
Withdrawn NCT04705701 - Comparing Post Cardiac Surgery Outcomes in ESRD Patient's With Early Dialysis Versus Standard Care N/A
Recruiting NCT04615065 - Acutelines: a Large Data-/Biobank of Acute and Emergency Medicine
Completed NCT05330676 - Evaluation of Microcirculatory Function and Mitochondrial Respiration After Cardiovascular Surgery
Active, not recruiting NCT04079829 - Postoperative Respiratory Abnormalities
Completed NCT04089098 - VOLume and Vasopressor Therapy in Patients With Hemodynamic instAbility
Completed NCT03190408 - Variation in Fluids Administered in Shock
Completed NCT05193123 - Psychological Trauma and Resilience After Critical Illness