View clinical trials related to Metastatic Prostate Carcinoma.
Filter by:This partially randomized phase I/II trial studies the side effects and how well sirolimus works when given together with docetaxel and carboplatin in treating patients with castration-resistant prostate cancer that has spread to other places in the body (metastatic). Biological therapies, such as sirolimus, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop tumor cells from growing. Drugs used in chemotherapy, such as docetaxel and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving sirolimus together with docetaxel and carboplatin may kill more tumor cells.
This phase Ib/II trial studies the safety, side effects, best dose, and effectiveness of ribociclib when given with enzalutamide in treating patients with castrate-resistant prostate cancer that has spread from the primary site (place where it started) to other places in the body (metastatic), is chemotherapy naive, and retains retinoblastoma expression. Testosterone can cause the growth of prostate cancer cells. Hormone therapy using enzalutamide may fight prostate cancer by blocking the use of testosterone by the tumor cells. Ribociclib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Enzalutamide with ribociclib may be safe, tolerable and/or effective in treating metastatic, castrate-resistant, chemotherapy naive prostate cancer that retains retinoblastoma expression.
This phase I trial studies the side effects and best dose of niclosamide when given together with enzalutamide in treating patients with castration resistant prostate cancer that has spread from the primary site to other places in the body. Androgens such as testosterone can cause the growth of prostate cancer cells. Drugs like enzalutamide block androgens from driving tumor growth; however, when androgen receptor splice variants are present, these drugs may not be effective. Niclosamide may decrease the amount of androgen receptor splice variant present within tumor cells, thus promoting the anti-tumor effects of enzalutamide. Giving niclosamide together with enzalutamide may be a better treatment for prostate cancer.
This phase I/II trial studies the side effects and best dose of cabazitaxel when given together with enzalutamide in treating patients with prostate cancer that has spread to other places in the body (metastatic) and has not responded to treatment with hormones or no longer responds to treatment with hormones (hormone-resistant). Drugs used in chemotherapy, such as cabazitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Androgen can cause the growth of prostate cancer cells. Hormone therapy using enzalutamide may fight prostate cancer by blocking the use of androgen by the tumor cells. Giving cabazitaxel together with enzalutamide may work better in treating metastatic, hormone-resistant prostate cancer.
This randomized phase II trial studies how well docetaxel works when given with or without ascorbic acid in treating patients with prostate cancer that has spread to other places in the body. Drugs used in chemotherapy, such as docetaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Ascorbic acid (vitamin C) is a water-soluble vitamin that may help inhibit the growth of cancer cells. It is not yet known whether docetaxel works better when given with or without ascorbic acid in treating prostate cancer.
This randomized pilot trial studies vaccine therapy and pembrolizumab in treating patients with prostate cancer that does not respond to treatment with hormones (hormone-resistant) and has spread to other places in the body (metastatic). Vaccines made from deoxyribonucleic acid (DNA), such as pTVG-HP plasmid DNA vaccine, may help the body build an effective immune response to kill tumor cells. Monoclonal antibodies, such as pembrolizumab, may find tumor cells and help kill them. Giving pTVG-HP plasmid DNA vaccine and pembrolizumab may kill more tumor cells.
This pilot trial studies how well dexamethasone and re-treatment with enzalutamide work in treating patients with prostate cancer that has spread to other places in the body (metastatic), does not respond to hormone therapy (hormone-resistant), and was previously treated with enzalutamide and docetaxel. Dexamethasone treatment may be able to reverse one resistance mechanism to enzalutamide therapy (overabundance of receptors for dexamethasone and other glucocorticoids inside cancer cells) and allow for renewed therapeutic sensitivity to enzalutamide. Androgens (a type of male hormone) can bind to androgen receptors found inside prostate cancer cells, which may cause the cancer cells to grow. Enzalutamide may stop the growth of prostate cancer cells by blocking the activity of the cancer cell androgen receptors. Giving dexamethasone prior to re-treatment with enzalutamide may be a treatment for prostate cancer.
This phase I trial studies the side effects of cytoreductive prostatectomy in treating patients with newly diagnosed prostate cancer that has spread from the primary site to other places in the body. Cytoreductive prostatectomy is a type of surgery that removes the prostate and as much of the tumor as possible. When combined with hormone therapy, robotic assisted radical prostatectomy (RARP) or conventional open retropubic radical prostatectomy (RRP) may prolong survival in patients with prostate cancer that has spread.
This pilot clinical trial studies combined fluorine F 18 sodium fluoride (NaF)/ fludeoxyglucose F 18 (FDG) positron emission tomography (PET) and magnetic resonance imaging (MRI) in measuring response to a drug, radium Ra 223 dichloride (Ra-223), in treating patients with prostate cancer that has not responded to hormone therapy and has spread to other parts of the body. Combining NaF/FDG in a simultaneous PET/MRI scan may help doctors accurately measure how well patients respond to treatment with radium Ra 223 dichloride.
This research trial studies molecular characterization of circulating tumor cells (CTCs) and circulating tumor (ct) deoxyribonucleic acid (DNA) in blood and plasma samples from patients with prostate cancer that has spread to other places in the body and/or has not responded to previous treatment with hormones. Studying samples of blood and plasma collected from patients with prostate cancer before, during, and/or after treatment in the laboratory may help doctors learn more about changes that occur in DNA and identify the development of drug resistance.