View clinical trials related to Metastatic Prostate Carcinoma.
Filter by:This pilot trial studies how well dexamethasone and re-treatment with enzalutamide work in treating patients with prostate cancer that has spread to other places in the body (metastatic), does not respond to hormone therapy (hormone-resistant), and was previously treated with enzalutamide and docetaxel. Dexamethasone treatment may be able to reverse one resistance mechanism to enzalutamide therapy (overabundance of receptors for dexamethasone and other glucocorticoids inside cancer cells) and allow for renewed therapeutic sensitivity to enzalutamide. Androgens (a type of male hormone) can bind to androgen receptors found inside prostate cancer cells, which may cause the cancer cells to grow. Enzalutamide may stop the growth of prostate cancer cells by blocking the activity of the cancer cell androgen receptors. Giving dexamethasone prior to re-treatment with enzalutamide may be a treatment for prostate cancer.
This pilot clinical trial studies combined fluorine F 18 sodium fluoride (NaF)/ fludeoxyglucose F 18 (FDG) positron emission tomography (PET) and magnetic resonance imaging (MRI) in measuring response to a drug, radium Ra 223 dichloride (Ra-223), in treating patients with prostate cancer that has not responded to hormone therapy and has spread to other parts of the body. Combining NaF/FDG in a simultaneous PET/MRI scan may help doctors accurately measure how well patients respond to treatment with radium Ra 223 dichloride.
This research trial studies molecular characterization of circulating tumor cells (CTCs) and circulating tumor (ct) deoxyribonucleic acid (DNA) in blood and plasma samples from patients with prostate cancer that has spread to other places in the body and/or has not responded to previous treatment with hormones. Studying samples of blood and plasma collected from patients with prostate cancer before, during, and/or after treatment in the laboratory may help doctors learn more about changes that occur in DNA and identify the development of drug resistance.