View clinical trials related to Metastatic Prostate Carcinoma.
Filter by:This research study provides genetic testing to men with prostate cancer that has spread to other parts of the body (metastatic prostate cancer) and will look for inherited genetic mutations in about 30 cancer-risk genes. The researchers seek to learn about the participant's opinions and concerns about genetic testing, to determine if this is an acceptable way to deliver testing and to potentially help guide the participant's treatment. Neither treatment nor any decisions related to treatment will take place on this study, but researchers will share each participant's genetic testing results with that participant.
This phase I trial studies the side effects and best dose of PI3Kbeta inhibitor AZD8186 when given together with docetaxel in treating patients with solid tumors with PTEN or PIK3CB mutations that have spread to other places in the body (metastatic) or cannot be removed by surgery. PI3Kbeta inhibitor AZD8186 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as docetaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving PI3Kbeta inhibitor AZD8186 and docetaxel may work better in treating patients with solid tumors.
This phase I/II trial studies the side effects of avelumab when given in different combinations with utomilumab, anti-OX40 antibody PF-04518600, and radiation therapy in treating patients with malignancies that have spread to other places in the body (advanced). Immunotherapy with monoclonal antibodies, such as avelumab, utomilumab, and anti-OX40 antibody PF-04518600, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Radiation therapy uses high-energy rays to kill tumor cells and shrink tumors. It is not yet known how well avelumab works in combination with these other anti-cancer therapies in patients with advanced malignancies.
This is a biomarker preselected, randomized, open-label, multicenter, phase II study in men with metastatic castration resistant prostate cancer (mCRPC). Patients with tumors that have ATM, BRCA1 and/or BRCA2 mutations/deletions/loss of heterozygosity will be randomized in a 1:1:1 fashion to each arm. Patients with mutations in noncanonical DNA repair genes including FANCA, PALB2, RAD51, ERCC3, MRE11, NBN, MLH3, CDK12, CHEK2, HDAC2, ATR, PMS2, GEN1, MSH2, MSH6, BRIP1, or FAM175A defects will be assigned to Arm IV with single agent olaparib.
This randomized phase II trial studies how well olaparib with or without cediranib works in treating patients with castration-resistant prostate cancer that has spread to other places in the body (metastatic). PARPs are proteins that help repair DNA mutations. PARP inhibitors, such as olaparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. Cediranib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving olaparib and cediranib may help treat patients with castration-resistant prostate cancer.
This phase II trial studies how well trametinib works in treating patients with hormone-resistant prostate cancer that is growing or getting worse and has spread to other parts of the body. Trametinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies the side effects and how well abiraterone acetate, niclosamide, and prednisone work in treating patients with hormone-resistant prostate cancer. Androgens can cause the growth of prostate cells. Hormone therapy using abiraterone acetate may fight prostate cancer by lowering the amount of androgen the body makes. Niclosamide is a drug that may block another signal that can cause prostate cancer cell growth. Prednisone is a drug that can help lessen inflammation. Giving abiraterone acetate, niclosamide, and prednisone may be a better treatment for patients with hormone-resistant prostate cancer.
This randomized phase II trial studies the side effects and how well abiraterone acetate, prednisone, and apalutamide work with or without ipilimumab or cabazitaxel and carboplatin in treating patients with castration-resistant prostate cancer that has spread to other places in the body. Androgens can cause the growth of prostate cancer cells. Drugs, such as abiraterone acetate and apalutamide may lessen the amount of androgens made by the body. Immunotherapy with monoclonal antibodies, such as ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as prednisone, cabazitaxel, and carboplatin work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether giving abiraterone acetate, prednisone, and apalutamide with or without ipilimumab or cabazitaxel and carboplatin may be a better way to treat patients with castration-resistant prostate cancer that has spread to other places in the body.
This study evaluates the tolerability, safety, pharmacokinetics and efficacy of SHR3680 in patients with metastatic castration-resistant prostate cancer (mCPRC). All participants will receive SHR3680.
This phase I/II trial studies the side effects and best dose of cabazitaxel when given together with enzalutamide in treating patients with prostate cancer that has spread to other places in the body (metastatic) and has not responded to treatment with hormones or no longer responds to treatment with hormones (hormone-resistant). Drugs used in chemotherapy, such as cabazitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Androgen can cause the growth of prostate cancer cells. Hormone therapy using enzalutamide may fight prostate cancer by blocking the use of androgen by the tumor cells. Giving cabazitaxel together with enzalutamide may work better in treating metastatic, hormone-resistant prostate cancer.